|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from torch.utils.data import Dataset, DataLoader |
|
from typing import Optional, Tuple, Union |
|
from einops import rearrange |
|
from transformers import PreTrainedModel, PretrainedConfig, EsmTokenizer |
|
from transformers.modeling_outputs import ( |
|
MaskedLMOutput, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
SequenceClassifierOutput, |
|
TokenClassifierOutput |
|
) |
|
from transformers.models.esm.modeling_esm import ( |
|
EsmIntermediate, |
|
EsmOutput, |
|
EsmPooler, |
|
EsmLMHead, |
|
EsmSelfOutput, |
|
EsmClassificationHead, |
|
create_position_ids_from_input_ids, |
|
) |
|
from tqdm.auto import tqdm |
|
|
|
|
|
class FastEsmConfig(PretrainedConfig): |
|
model_type = "fast_esm" |
|
def __init__( |
|
self, |
|
vocab_size=None, |
|
mask_token_id=None, |
|
pad_token_id=None, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=1026, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
position_embedding_type="absolute", |
|
emb_layer_norm_before=None, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.emb_layer_norm_before = emb_layer_norm_before |
|
|
|
def to_dict(self): |
|
""" |
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. |
|
|
|
Returns: |
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, |
|
""" |
|
output = super().to_dict() |
|
return output |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(x, cos, sin): |
|
cos = cos[:, :, : x.shape[-2], :] |
|
sin = sin[:, :, : x.shape[-2], :] |
|
|
|
return (x * cos) + (rotate_half(x) * sin) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
""" |
|
Rotary position embeddings based on those in |
|
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation |
|
matrices which depend on their relative positions. |
|
""" |
|
|
|
def __init__(self, dim: int): |
|
super().__init__() |
|
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) |
|
inv_freq = inv_freq |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self._seq_len_cached = None |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
|
|
def _update_cos_sin_tables(self, x, seq_dimension=2): |
|
seq_len = x.shape[seq_dimension] |
|
|
|
|
|
|
|
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: |
|
self._seq_len_cached = seq_len |
|
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq) |
|
freqs = torch.outer(t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
|
|
self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype) |
|
self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype) |
|
|
|
return self._cos_cached, self._sin_cached |
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2) |
|
|
|
return ( |
|
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), |
|
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), |
|
) |
|
|
|
|
|
class EsmEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
if config.emb_layer_norm_before: |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
else: |
|
self.layer_norm = None |
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer( |
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False |
|
) |
|
|
|
def forward( |
|
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 |
|
): |
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
embeddings = inputs_embeds |
|
|
|
if self.layer_norm is not None: |
|
embeddings = self.layer_norm(embeddings) |
|
if attention_mask is not None: |
|
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype) |
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
class EsmSelfAttention(nn.Module): |
|
def __init__(self, config, position_embedding_type=None): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.scale = self.attention_head_size**-0.5 |
|
|
|
self.dropout_prob = config.attention_probs_dropout_prob |
|
self.position_embedding_type = position_embedding_type or getattr( |
|
config, "position_embedding_type", "absolute" |
|
) |
|
self.rotary_embeddings = None |
|
if self.position_embedding_type == "rotary": |
|
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
return rearrange(x, 'b s (h d) -> b h s d', h=self.num_attention_heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> Tuple[torch.Tensor]: |
|
query_layer = self.transpose_for_scores(self.query(hidden_states)) * self.scale |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
if self.position_embedding_type == "rotary": |
|
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) |
|
|
|
context_layer = F.scaled_dot_product_attention( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
attn_mask=attention_mask, |
|
dropout_p=self.dropout_prob, |
|
scale=1.0 |
|
) |
|
return rearrange(context_layer, 'b h s d -> b s (h d)') |
|
|
|
|
|
class EsmAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self = EsmSelfAttention(config) |
|
self.output = EsmSelfOutput(config) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
): |
|
hidden_states_ln = self.LayerNorm(hidden_states) |
|
attention_output = self.self( |
|
hidden_states_ln, |
|
attention_mask, |
|
) |
|
return self.output(attention_output, hidden_states) |
|
|
|
|
|
class EsmLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = EsmAttention(config) |
|
self.intermediate = EsmIntermediate(config) |
|
self.output = EsmOutput(config) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
): |
|
attention_output = self.attention( |
|
hidden_states, |
|
attention_mask, |
|
) |
|
layer_output = self.feed_forward_chunk(attention_output) |
|
return layer_output |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
attention_output_ln = self.LayerNorm(attention_output) |
|
intermediate_output = self.intermediate(attention_output_ln) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class EsmEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
output_hidden_states=False, |
|
): |
|
all_hidden_states = () if output_hidden_states else None |
|
for layer_module in self.layer: |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
hidden_states = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
attention_mask, |
|
) |
|
else: |
|
hidden_states = layer_module( |
|
hidden_states, |
|
attention_mask, |
|
) |
|
|
|
if self.emb_layer_norm_after: |
|
hidden_states = self.emb_layer_norm_after(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
) |
|
|
|
|
|
|
|
class ProteinDataset(Dataset): |
|
"""Simple dataset for protein sequences.""" |
|
def __init__(self, sequences: list[str]): |
|
self.sequences = sequences |
|
|
|
def __len__(self) -> int: |
|
return len(self.sequences) |
|
|
|
def __getitem__(self, idx: int) -> str: |
|
return self.sequences[idx] |
|
|
|
|
|
class FastEsmPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
config_class = FastEsmConfig |
|
base_model_prefix = "fastesm" |
|
supports_gradient_checkpointing = True |
|
tokenizer = EsmTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D") |
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
try: |
|
return self.embeddings.word_embeddings |
|
except AttributeError: |
|
return self.esm.embeddings.word_embeddings |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
"""Get the device of the model.""" |
|
return next(self.parameters()).device |
|
|
|
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
"""Apply mean pooling to sequence outputs.""" |
|
if attention_mask is None: |
|
return x.mean(dim=1) |
|
else: |
|
attention_mask = attention_mask.unsqueeze(-1) |
|
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1) |
|
|
|
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]: |
|
"""Collate function for batching sequences.""" |
|
return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8) |
|
|
|
def _read_sequences_from_db(self, db_path: str) -> set[str]: |
|
"""Read sequences from SQLite database.""" |
|
import sqlite3 |
|
sequences = [] |
|
with sqlite3.connect(db_path) as conn: |
|
c = conn.cursor() |
|
c.execute("SELECT sequence FROM embeddings") |
|
while True: |
|
row = c.fetchone() |
|
if row is None: |
|
break |
|
sequences.append(row[0]) |
|
return set(sequences) |
|
|
|
def embed_dataset( |
|
self, |
|
sequences: list[str], |
|
batch_size: int = 2, |
|
max_len: int = 512, |
|
full_embeddings: bool = False, |
|
full_precision: bool = False, |
|
pooling_type: str = 'mean', |
|
num_workers: int = 0, |
|
sql: bool = False, |
|
sql_db_path: str = 'embeddings.db', |
|
) -> Optional[dict[str, torch.Tensor]]: |
|
"""Embed a dataset of protein sequences. |
|
|
|
Args: |
|
sequences: List of protein sequences |
|
batch_size: Batch size for processing |
|
max_len: Maximum sequence length |
|
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False) |
|
full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage |
|
pooling_type: Type of pooling ('mean' or 'cls') |
|
num_workers: Number of workers for data loading, 0 for the main process |
|
sql: Whether to store embeddings in SQLite database - will be stored in float32 |
|
sql_db_path: Path to SQLite database |
|
|
|
Returns: |
|
Dictionary mapping sequences to embeddings, or None if sql=True |
|
""" |
|
sequences = list(set([seq[:max_len] for seq in sequences])) |
|
sequences = sorted(sequences, key=len, reverse=True) |
|
dataset = ProteinDataset(sequences) |
|
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn) |
|
device = self.device |
|
|
|
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
if full_embeddings: |
|
return residue_embeddings |
|
elif pooling_type == 'mean': |
|
return self.mean_pooling(residue_embeddings, attention_mask) |
|
else: |
|
return residue_embeddings[:, 0, :] |
|
|
|
if sql: |
|
import sqlite3 |
|
conn = sqlite3.connect(sql_db_path) |
|
c = conn.cursor() |
|
c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)') |
|
already_embedded = self._read_sequences_from_db(sql_db_path) |
|
to_embed = [seq for seq in sequences if seq not in already_embedded] |
|
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}") |
|
print(f"Embedding {len(to_embed)} new sequences") |
|
|
|
with torch.no_grad(): |
|
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'): |
|
seqs = sequences[i * batch_size:(i + 1) * batch_size] |
|
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device) |
|
residue_embeddings = self.forward(input_ids, attention_mask, output_hidden_states=True).hidden_states[-1].float() |
|
embeddings = get_embeddings(residue_embeddings, attention_mask) |
|
|
|
for seq, emb in zip(seqs, embeddings): |
|
c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)", |
|
(seq, emb.cpu().numpy().tobytes())) |
|
|
|
if (i + 1) % 100 == 0: |
|
conn.commit() |
|
|
|
conn.commit() |
|
conn.close() |
|
return None |
|
|
|
embeddings_dict = {} |
|
with torch.no_grad(): |
|
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'): |
|
seqs = sequences[i * batch_size:(i + 1) * batch_size] |
|
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device) |
|
residue_embeddings = self.forward(input_ids, attention_mask, output_hidden_states=True).hidden_states[-1].float() |
|
if full_precision: |
|
residue_embeddings = residue_embeddings.float() |
|
embeddings = get_embeddings(residue_embeddings, attention_mask) |
|
for seq, emb in zip(seqs, embeddings): |
|
embeddings_dict[seq] = emb |
|
|
|
return embeddings_dict |
|
|
|
class FastEsmModel(FastEsmPreTrainedModel): |
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
self.embeddings = EsmEmbeddings(config) |
|
self.encoder = EsmEncoder(config) |
|
self.pooler = EsmPooler(config) if add_pooling_layer else None |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
if output_attentions is not None: |
|
raise ValueError("output_attentions is not supported by F.scaled_dot_product_attention") |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
|
|
extended_attention_mask = attention_mask[:, None, None, :].expand( |
|
batch_size, 1, seq_length, seq_length |
|
).bool() |
|
else: |
|
extended_attention_mask = None |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
sequence_output = encoder_outputs.last_hidden_state |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
) |
|
|
|
|
|
class FastEsmForMaskedLM(FastEsmPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.decoder.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.esm = FastEsmModel(config, add_pooling_layer=False) |
|
self.lm_head = EsmLMHead(config) |
|
self.loss_fct = nn.CrossEntropyLoss() |
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
outputs = self.esm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_hidden_states=output_hidden_states, |
|
output_attentions=output_attentions, |
|
) |
|
sequence_output = outputs.last_hidden_state |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(prediction_scores.device) |
|
loss = self.loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
return MaskedLMOutput( |
|
loss=loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
) |
|
|
|
def predict_contacts(self, tokens, attention_mask): |
|
raise NotImplementedError("predict_contacts is not supported by F.scaled_dot_product_attention") |
|
|
|
|
|
class FastEsmForSequenceClassification(FastEsmPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
self.esm = FastEsmModel(config, add_pooling_layer=False) |
|
self.classifier = EsmClassificationHead(config) |
|
self.mse = nn.MSELoss() |
|
self.ce = nn.CrossEntropyLoss() |
|
self.bce = nn.BCEWithLogitsLoss() |
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutput]: |
|
outputs = self.esm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
sequence_output = outputs.last_hidden_state |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
if self.num_labels == 1: |
|
loss = self.mse(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = self.mse(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss = self.bce(logits, labels) |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
) |
|
|
|
|
|
class FastEsmForTokenClassification(FastEsmPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.esm = FastEsmModel(config, add_pooling_layer=False) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
self.loss_fct = nn.CrossEntropyLoss() |
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
) -> Union[Tuple, TokenClassifierOutput]: |
|
outputs = self.esm( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
sequence_output = outputs.last_hidden_state |
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
""" |
|
Test the hidden state differences between the FastEsmModel and the HF EsmModel. |
|
In full precision, the differences are very very small, but nonzero due to floating point issues with F.scaled_dot_product_attention. |
|
In Pytorch 2.5+ (and linux kernel), this implementation is very fast and uses less memory than the HF implementation. |
|
""" |
|
import random |
|
from transformers import EsmForMaskedLM as TransformersEsmModel, EsmTokenizer |
|
|
|
model_paths = [ |
|
"facebook/esm2_t6_8M_UR50D", |
|
"facebook/esm2_t12_35M_UR50D", |
|
|
|
|
|
] |
|
canonical_amino_acids = "ACDEFGHIKLMNPQRSTVWY" |
|
length = 64 |
|
seq_count = 100 |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
tolerances = [1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8] |
|
|
|
def generate_random_sequence(length: int) -> str: |
|
return 'M' + "".join(random.choices(canonical_amino_acids, k=length)) |
|
|
|
print("Percentage of hidden states that are within the tolerance:") |
|
for model_path in model_paths: |
|
print(f"Testing {model_path}...") |
|
tokenizer = EsmTokenizer.from_pretrained(model_path) |
|
config = FastEsmConfig.from_pretrained(model_path) |
|
fast_model = FastEsmForMaskedLM(config).from_pretrained(model_path).to(device) |
|
model = TransformersEsmModel.from_pretrained(model_path, token_dropout=False).to(device) |
|
|
|
counts = [0] * len(tolerances) |
|
for _ in range(seq_count): |
|
example_seq = generate_random_sequence(length) |
|
fast_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device) |
|
fast_output = fast_model(fast_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu() |
|
|
|
model_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device) |
|
model_output = model(model_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu() |
|
|
|
for i, atol in enumerate(tolerances): |
|
if torch.allclose(fast_output, model_output, atol=atol): |
|
counts[i] += 1 |
|
|
|
print(f"{model_path}:") |
|
for i, atol in enumerate(tolerances): |
|
print(f" tolerance={atol}: {counts[i] / seq_count * 100}%") |
|
|
|
model.cpu() |
|
fast_model.cpu() |
|
del model |
|
del fast_model |
|
torch.cuda.empty_cache() |
|
|