import torch import torch.nn as nn from torch.nn import functional as F from typing import Optional, Tuple, Union from einops import rearrange from transformers import PreTrainedModel from transformers.modeling_outputs import ( MaskedLMOutput, BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, SequenceClassifierOutput, TokenClassifierOutput ) from transformers.models.esm.modeling_esm import ( RotaryEmbedding, EsmContactPredictionHead, EsmIntermediate, EsmOutput, EsmPooler, EsmLMHead, EsmSelfOutput, EsmClassificationHead, create_position_ids_from_input_ids, ) from .config_fastesm import FastEsmConfig class EsmEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) if config.emb_layer_norm_before: self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) else: self.layer_norm = None self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) # Token dropout does not work correctly so we disable it # self.token_dropout = config.token_dropout self.mask_token_id = config.mask_token_id def forward( self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) embeddings = inputs_embeds if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings if self.layer_norm is not None: embeddings = self.layer_norm(embeddings) if attention_mask is not None: embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class EsmSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.scale = self.attention_head_size**-0.5 self.dropout_prob = config.attention_probs_dropout_prob self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) self.rotary_embeddings = None if self.position_embedding_type == "rotary": self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: return rearrange(x, 'b s (h d) -> b h s d', h=self.num_attention_heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, ) -> Tuple[torch.Tensor]: query_layer = self.transpose_for_scores(self.query(hidden_states)) * self.scale key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) if self.position_embedding_type == "rotary": query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) context_layer = F.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=attention_mask, dropout_p=self.dropout_prob, scale=1.0 ) return rearrange(context_layer, 'b h s d -> b s (h d)') class EsmAttention(nn.Module): def __init__(self, config): super().__init__() self.self = EsmSelfAttention(config) self.output = EsmSelfOutput(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states, attention_mask=None, ): hidden_states_ln = self.LayerNorm(hidden_states) attention_output = self.self( hidden_states_ln, attention_mask, ) return self.output(attention_output, hidden_states) class EsmLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = EsmAttention(config) self.intermediate = EsmIntermediate(config) self.output = EsmOutput(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states, attention_mask=None, ): attention_output = self.attention( hidden_states, attention_mask, ) layer_output = self.feed_forward_chunk(attention_output) return layer_output def feed_forward_chunk(self, attention_output): attention_output_ln = self.LayerNorm(attention_output) intermediate_output = self.intermediate(attention_output_ln) layer_output = self.output(intermediate_output, attention_output) return layer_output class EsmEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)]) self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_hidden_states=False, ): all_hidden_states = () if output_hidden_states else None for layer_module in self.layer: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, ) else: hidden_states = layer_module( hidden_states, attention_mask, ) if self.emb_layer_norm_after: hidden_states = self.emb_layer_norm_after(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) class FastEsmPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FastEsmConfig base_model_prefix = "fastesm" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def get_input_embeddings(self) -> nn.Module: try: return self.embeddings.word_embeddings except AttributeError: return self.esm.embeddings.word_embeddings class FastEsmModel(FastEsmPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = EsmEmbeddings(config) self.encoder = EsmEncoder(config) self.pooler = EsmPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: if output_attentions is not None: raise ValueError("output_attentions is not supported by F.scaled_dot_product_attention") output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, ) # Prepare attention mask if attention_mask is not None: # attention_mask shape should be (batch_size, 1, 1, seq_length) # Expand to (batch_size, 1, seq_length, seq_length) extended_attention_mask = attention_mask[:, None, None, :].expand( batch_size, 1, seq_length, seq_length ) # Convert mask to float with 0.0 for positions to keep and -inf for masked positions attention_mask = attention_mask.to(dtype=embedding_output.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(embedding_output.dtype).min else: extended_attention_mask = None encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, output_hidden_states=output_hidden_states, ) sequence_output = encoder_outputs.last_hidden_state pooled_output = self.pooler(sequence_output) if self.pooler is not None else None return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) class FastEsmForMaskedLM(FastEsmPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight"] def __init__(self, config): super().__init__(config) self.esm = FastEsmModel(config, add_pooling_layer=False) self.lm_head = EsmLMHead(config) self.loss_fct = nn.CrossEntropyLoss() self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) sequence_output = outputs.last_hidden_state prediction_scores = self.lm_head(sequence_output) loss = None if labels is not None: labels = labels.to(prediction_scores.device) loss = self.loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) return MaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, ) def predict_contacts(self, tokens, attention_mask): raise NotImplementedError("predict_contacts is not supported by F.scaled_dot_product_attention") class FastEsmForSequenceClassification(FastEsmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.esm = FastEsmModel(config, add_pooling_layer=False) self.classifier = EsmClassificationHead(config) self.mse = nn.MSELoss() self.ce = nn.CrossEntropyLoss() self.bce = nn.BCEWithLogitsLoss() self.init_weights() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state logits = self.classifier(sequence_output) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": if self.num_labels == 1: loss = self.mse(logits.squeeze(), labels.squeeze()) else: loss = self.mse(logits, labels) elif self.config.problem_type == "single_label_classification": loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss = self.bce(logits, labels) return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) class FastEsmForTokenClassification(FastEsmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.esm = FastEsmModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.loss_fct = nn.CrossEntropyLoss() self.init_weights() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: labels = labels.to(logits.device) loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) if __name__ == "__main__": """ Test the hidden state differences between the FastEsmModel and the HF EsmModel. In full precision, the differences are very small, but nonzero due to floating point issues with F.scaled_dot_product_attention. In Pytorch 2.5+ (and linux kernel), this implementation is very fast and uses less memory than the HF implementation. """ import random from transformers import EsmModel as TransformersEsmModel, EsmTokenizer model_paths = [ "facebook/esm2_t6_8M_UR50D", "facebook/esm2_t12_35M_UR50D", "facebook/esm2_t30_150M_UR50D", "facebook/esm2_t33_650M_UR50D", ] canonical_amino_acids = "ACDEFGHIKLMNPQRSTVWY" length = 64 seq_count = 100 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tolerances = [1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8] def generate_random_sequence(length: int) -> str: return 'M' + "".join(random.choices(canonical_amino_acids, k=length)) print("Percentage of hidden states that are within the tolerance:") for model_path in model_paths: print(f"Testing {model_path}...") tokenizer = EsmTokenizer.from_pretrained(model_path) fast_model = FastEsmModel.from_pretrained(model_path, token_dropout=False).to(device) model = TransformersEsmModel.from_pretrained(model_path, token_dropout=False).to(device) counts = [0] * len(tolerances) for _ in range(seq_count): example_seq = generate_random_sequence(length) fast_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device) fast_output = fast_model(fast_tokens).last_hidden_state.detach().cpu() model_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device) model_output = model(model_tokens).last_hidden_state.detach().cpu() for i, atol in enumerate(tolerances): if torch.allclose(fast_output, model_output, atol=atol): counts[i] += 1 print(f"{model_path}:") for i, atol in enumerate(tolerances): print(f" tolerance={atol}: {counts[i] / seq_count * 100}%") model.cpu() fast_model.cpu() del model del fast_model torch.cuda.empty_cache()