import torch import torch.nn as nn from torch.nn import functional as F from torch.utils.data import Dataset, DataLoader from typing import Optional, Tuple, Union from einops import rearrange from transformers import PreTrainedModel, PretrainedConfig, EsmTokenizer from transformers.modeling_outputs import ( MaskedLMOutput, BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, SequenceClassifierOutput, TokenClassifierOutput ) from transformers.models.esm.modeling_esm import ( EsmIntermediate, EsmOutput, EsmPooler, EsmLMHead, EsmSelfOutput, EsmClassificationHead, ) from tqdm.auto import tqdm class FastEsmConfig(PretrainedConfig): model_type = "fast_esm" def __init__( self, vocab_size=None, mask_token_id=None, pad_token_id=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1026, initializer_range=0.02, layer_norm_eps=1e-12, position_embedding_type="absolute", emb_layer_norm_before=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.emb_layer_norm_before = emb_layer_norm_before def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = super().to_dict() return output def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(x, cos, sin): cos = cos[:, :, : x.shape[-2], :] sin = sin[:, :, : x.shape[-2], :] return (x * cos) + (rotate_half(x) * sin) def symmetrize(x): "Make layer symmetric in final two dimensions, used for contact prediction." return x + x.transpose(-1, -2) def average_product_correct(x): "Perform average product correct, used for contact prediction." a1 = x.sum(-1, keepdims=True) a2 = x.sum(-2, keepdims=True) a12 = x.sum((-1, -2), keepdims=True) avg = a1 * a2 avg.div_(a12) # in-place to reduce memory normalized = x - avg return normalized class EsmContactPredictionHead(nn.Module): """Performs symmetrization, apc, and computes a logistic regression on the output features""" def __init__( self, in_features: int, bias=True, eos_idx: int = 2, ): super().__init__() self.in_features = in_features self.eos_idx = eos_idx self.regression = nn.Linear(in_features, 1, bias) self.activation = nn.Sigmoid() def forward(self, tokens, attentions): # remove eos token attentions eos_mask = tokens.ne(self.eos_idx).to(attentions) eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2) attentions = attentions * eos_mask[:, None, None, :, :] attentions = attentions[..., :-1, :-1] # remove cls token attentions attentions = attentions[..., 1:, 1:] batch_size, layers, heads, seqlen, _ = attentions.size() attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen) # features: batch x channels x tokens x tokens (symmetric) attentions = attentions.to( self.regression.weight.device ) # attentions always float32, may need to convert to float16 attentions = average_product_correct(symmetrize(attentions)) attentions = attentions.permute(0, 2, 3, 1) return self.activation(self.regression(attentions).squeeze(3)) class RotaryEmbedding(torch.nn.Module): """ Rotary position embeddings based on those in [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation matrices which depend on their relative positions. """ def __init__(self, dim: int): super().__init__() # Generate and save the inverse frequency buffer (non trainable) inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) inv_freq = inv_freq self.register_buffer("inv_freq", inv_freq) self._seq_len_cached = None self._cos_cached = None self._sin_cached = None def _update_cos_sin_tables(self, x, seq_dimension=2): seq_len = x.shape[seq_dimension] # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: self._seq_len_cached = seq_len t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype) self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype) return self._cos_cached, self._sin_cached def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2) return ( apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), ) class EsmEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) if config.emb_layer_norm_before: self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) else: self.layer_norm = None self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) embeddings = inputs_embeds if self.layer_norm is not None: embeddings = self.layer_norm(embeddings) if attention_mask is not None: embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class EsmSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.scale = self.attention_head_size**-0.5 self.dropout_prob = config.attention_probs_dropout_prob self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) self.rotary_embeddings = None if self.position_embedding_type == "rotary": self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: return rearrange(x, 'b s (h d) -> b h s d', h=self.num_attention_heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, output_attentions: bool = False, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Forward pass for self attention. Args: hidden_states: Input tensor attention_mask: Optional attention mask output_attentions: Whether to return attention weights Returns: Output tensor and optionally attention weights """ query_layer = self.transpose_for_scores(self.query(hidden_states)) * self.scale key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) if self.position_embedding_type == "rotary": query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) if output_attentions: # Manual attention computation to get attention weights attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = F.softmax(attention_scores, dim=-1) if self.dropout_prob > 0: attention_probs = F.dropout(attention_probs, p=self.dropout_prob, training=self.training) context_layer = torch.matmul(attention_probs, value_layer) context_layer = rearrange(context_layer, 'b h s d -> b s (h d)') return context_layer, attention_probs else: context_layer = F.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=attention_mask, dropout_p=self.dropout_prob, scale=1.0 ) context_layer = rearrange(context_layer, 'b h s d -> b s (h d)') return context_layer class EsmAttention(nn.Module): def __init__(self, config): super().__init__() self.self = EsmSelfAttention(config) self.output = EsmSelfOutput(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, output_attentions: bool = False, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Forward pass for attention layer. Args: hidden_states: Input tensor attention_mask: Optional attention mask output_attentions: Whether to return attention weights Returns: Output tensor and optionally attention weights """ hidden_states_ln = self.LayerNorm(hidden_states) self_outputs = self.self( hidden_states_ln, attention_mask, output_attentions, ) if output_attentions: attention_output, attention_weights = self_outputs attention_output = self.output(attention_output, hidden_states) return attention_output, attention_weights else: attention_output = self_outputs return self.output(attention_output, hidden_states) class EsmLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = EsmAttention(config) self.intermediate = EsmIntermediate(config) self.output = EsmOutput(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, output_attentions: bool = False, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """Forward pass for transformer layer. Args: hidden_states: Input tensor attention_mask: Optional attention mask output_attentions: Whether to return attention weights Returns: Output tensor and optionally attention weights """ attention_outputs = self.attention( hidden_states, attention_mask, output_attentions, ) if output_attentions: attention_output, attention_weights = attention_outputs else: attention_output = attention_outputs attention_weights = None layer_output = self.feed_forward_chunk(attention_output) if output_attentions: return layer_output, attention_weights return layer_output def feed_forward_chunk(self, attention_output): attention_output_ln = self.LayerNorm(attention_output) intermediate_output = self.intermediate(attention_output_ln) layer_output = self.output(intermediate_output, attention_output) return layer_output class EsmEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)]) self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, output_hidden_states: bool = False, output_attentions: bool = False, ) -> BaseModelOutputWithPastAndCrossAttentions: """Forward pass for transformer encoder. Args: hidden_states: Input tensor attention_mask: Optional attention mask output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: BaseModelOutputWithPastAndCrossAttentions containing model outputs """ all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for layer_module in self.layer: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, output_attentions, ) if output_attentions: hidden_states, attention_weights = layer_outputs all_attentions = all_attentions + (attention_weights,) else: hidden_states = layer_outputs if self.emb_layer_norm_after: hidden_states = self.emb_layer_norm_after(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, ) ### Dataset for Embedding class ProteinDataset(Dataset): """Simple dataset for protein sequences.""" def __init__(self, sequences: list[str]): self.sequences = sequences def __len__(self) -> int: return len(self.sequences) def __getitem__(self, idx: int) -> str: return self.sequences[idx] class FastEsmPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FastEsmConfig base_model_prefix = "fastesm" supports_gradient_checkpointing = True tokenizer = EsmTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D") def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def get_input_embeddings(self) -> nn.Module: try: return self.embeddings.word_embeddings except AttributeError: return self.esm.embeddings.word_embeddings @property def device(self) -> torch.device: """Get the device of the model.""" return next(self.parameters()).device def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: """Apply mean pooling to sequence outputs.""" if attention_mask is None: return x.mean(dim=1) else: attention_mask = attention_mask.unsqueeze(-1) return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1) def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]: """Collate function for batching sequences.""" return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8) def _read_sequences_from_db(self, db_path: str) -> set[str]: """Read sequences from SQLite database.""" import sqlite3 sequences = [] with sqlite3.connect(db_path) as conn: c = conn.cursor() c.execute("SELECT sequence FROM embeddings") while True: row = c.fetchone() if row is None: break sequences.append(row[0]) return set(sequences) def embed_dataset( self, sequences: list[str], batch_size: int = 2, max_len: int = 512, full_embeddings: bool = False, full_precision: bool = False, pooling_type: str = 'mean', num_workers: int = 0, sql: bool = False, sql_db_path: str = 'embeddings.db', ) -> Optional[dict[str, torch.Tensor]]: """Embed a dataset of protein sequences. Args: sequences: List of protein sequences batch_size: Batch size for processing max_len: Maximum sequence length full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False) full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage pooling_type: Type of pooling ('mean' or 'cls') num_workers: Number of workers for data loading, 0 for the main process sql: Whether to store embeddings in SQLite database - will be stored in float32 sql_db_path: Path to SQLite database Returns: Dictionary mapping sequences to embeddings, or None if sql=True """ sequences = list(set([seq[:max_len] for seq in sequences])) sequences = sorted(sequences, key=len, reverse=True) dataset = ProteinDataset(sequences) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn) device = self.device def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: if full_embeddings: return residue_embeddings elif pooling_type == 'mean': return self.mean_pooling(residue_embeddings, attention_mask) else: return residue_embeddings[:, 0, :] if sql: import sqlite3 conn = sqlite3.connect(sql_db_path) c = conn.cursor() c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)') already_embedded = self._read_sequences_from_db(sql_db_path) to_embed = [seq for seq in sequences if seq not in already_embedded] print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}") print(f"Embedding {len(to_embed)} new sequences") if len(to_embed) > 0: with torch.no_grad(): for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'): seqs = sequences[i * batch_size:(i + 1) * batch_size] input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device) residue_embeddings = self.forward(input_ids, attention_mask, output_hidden_states=True).hidden_states[-1].detach().float() # required for sql embeddings = get_embeddings(residue_embeddings, attention_mask).cpu() for seq, emb in zip(seqs, embeddings): c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)", (seq, emb.cpu().numpy().tobytes())) if (i + 1) % 100 == 0: conn.commit() conn.commit() conn.close() return None embeddings_dict = {} with torch.no_grad(): for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'): seqs = sequences[i * batch_size:(i + 1) * batch_size] input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device) residue_embeddings = self.forward(input_ids, attention_mask, output_hidden_states=True).hidden_states[-1].detach().float() if full_precision: residue_embeddings = residue_embeddings.float() embeddings = get_embeddings(residue_embeddings, attention_mask).cpu() for seq, emb in zip(seqs, embeddings): embeddings_dict[seq] = emb return embeddings_dict class FAST_ESM_ENCODER(FastEsmPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = EsmEmbeddings(config) self.encoder = EsmEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, # to play nice with HF adjacent packages ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: """Forward pass for base model. Args: input_ids: Input token IDs attention_mask: Optional attention mask position_ids: Optional position IDs inputs_embeds: Optional input embeddings output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: Model outputs including hidden states and optionally attention weights """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, ) if attention_mask is not None: extended_attention_mask = attention_mask[:, None, None, :].expand( batch_size, 1, seq_length, seq_length ).bool() else: extended_attention_mask = None encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) sequence_output = encoder_outputs.last_hidden_state return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class FastEsmModel(FastEsmPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.esm = FAST_ESM_ENCODER(config) self.pooler = EsmPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, # to play nice with HF adjacent packages ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: """Forward pass for base model. Args: input_ids: Input token IDs attention_mask: Optional attention mask position_ids: Optional position IDs inputs_embeds: Optional input embeddings output_hidden_states: Whether to return all hidden states output_attentions: Whether to return attention weights Returns: Model outputs including hidden states and optionally attention weights """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, ) if attention_mask is not None: extended_attention_mask = attention_mask[:, None, None, :].expand( batch_size, 1, seq_length, seq_length ).bool() else: extended_attention_mask = None encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) sequence_output = encoder_outputs.last_hidden_state pooled_output = self.pooler(sequence_output) if self.pooler is not None else None return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class FastEsmForMaskedLM(FastEsmPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight"] def __init__(self, config): super().__init__(config) self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False) self.lm_head = EsmLMHead(config) self.loss_fct = nn.CrossEntropyLoss() self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, # to play nice with HF adjacent packages ) -> Union[Tuple, MaskedLMOutput]: outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) sequence_output = outputs.last_hidden_state prediction_scores = self.lm_head(sequence_output) loss = None if labels is not None: labels = labels.to(prediction_scores.device) loss = self.loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) return MaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def predict_contacts(self, tokens, attention_mask): raise NotImplementedError("predict_contacts is not supported by F.scaled_dot_product_attention") class FastEsmForSequenceClassification(FastEsmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False) self.classifier = EsmClassificationHead(config) self.mse = nn.MSELoss() self.ce = nn.CrossEntropyLoss() self.bce = nn.BCEWithLogitsLoss() self.init_weights() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state logits = self.classifier(sequence_output) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": if self.num_labels == 1: loss = self.mse(logits.squeeze(), labels.squeeze()) else: loss = self.mse(logits, labels) elif self.config.problem_type == "single_label_classification": loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss = self.bce(logits, labels) return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class FastEsmForTokenClassification(FastEsmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.esm = FAST_ESM_ENCODER(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.loss_fct = nn.CrossEntropyLoss() self.init_weights() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: labels = labels.to(logits.device) loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) if __name__ == "__main__": """ Test the hidden state differences between the FastEsmModel and the HF EsmModel. In full precision, the differences are very very small, but nonzero due to floating point issues with F.scaled_dot_product_attention. In Pytorch 2.5+ (and linux kernel), this implementation is very fast and uses less memory than the HF implementation. """ import random from transformers import EsmForMaskedLM as TransformersEsmModel, EsmTokenizer model_paths = [ "facebook/esm2_t6_8M_UR50D", "facebook/esm2_t12_35M_UR50D", #"facebook/esm2_t30_150M_UR50D", #"facebook/esm2_t33_650M_UR50D", ] canonical_amino_acids = "ACDEFGHIKLMNPQRSTVWY" length = 64 seq_count = 100 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tolerances = [1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8] def generate_random_sequence(length: int) -> str: return 'M' + "".join(random.choices(canonical_amino_acids, k=length)) print("Percentage of hidden states that are within the tolerance:") for model_path in model_paths: print(f"Testing {model_path}...") tokenizer = EsmTokenizer.from_pretrained(model_path) config = FastEsmConfig.from_pretrained(model_path) fast_model = FastEsmForMaskedLM(config).from_pretrained(model_path).to(device) model = TransformersEsmModel.from_pretrained(model_path, token_dropout=False).to(device) counts = [0] * len(tolerances) for _ in range(seq_count): example_seq = generate_random_sequence(length) fast_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device) fast_output = fast_model(fast_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu() model_tokens = tokenizer(example_seq, return_tensors="pt").input_ids.to(device) model_output = model(model_tokens, output_hidden_states=True).hidden_states[-1].detach().cpu() for i, atol in enumerate(tolerances): if torch.allclose(fast_output, model_output, atol=atol): counts[i] += 1 print(f"{model_path}:") for i, atol in enumerate(tolerances): print(f" tolerance={atol}: {counts[i] / seq_count * 100}%") model.cpu() fast_model.cpu() del model del fast_model torch.cuda.empty_cache()