End of training
Browse files
README.md
CHANGED
@@ -20,7 +20,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
axolotl version: `0.6.0`
|
21 |
```yaml
|
22 |
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
|
23 |
-
batch_size:
|
24 |
bf16: true
|
25 |
chat_template: tokenizer_default_fallback_alpaca
|
26 |
datasets:
|
@@ -45,7 +45,7 @@ hub_strategy: checkpoint
|
|
45 |
learning_rate: 0.0002
|
46 |
logging_steps: 10
|
47 |
lr_scheduler: cosine
|
48 |
-
max_steps:
|
49 |
micro_batch_size: 32
|
50 |
model_type: AutoModelForCausalLM
|
51 |
num_epochs: 100
|
@@ -59,6 +59,8 @@ save_total_limit: 1
|
|
59 |
sequence_len: 2048
|
60 |
tokenizer_type: LlamaTokenizerFast
|
61 |
torch_dtype: bf16
|
|
|
|
|
62 |
trust_remote_code: true
|
63 |
val_set_size: 0.1
|
64 |
wandb_entity: ''
|
@@ -76,8 +78,6 @@ warmup_ratio: 0.05
|
|
76 |
# test-repo
|
77 |
|
78 |
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the argilla/databricks-dolly-15k-curated-en dataset.
|
79 |
-
It achieves the following results on the evaluation set:
|
80 |
-
- Loss: 9.6817
|
81 |
|
82 |
## Model description
|
83 |
|
@@ -101,19 +101,19 @@ The following hyperparameters were used during training:
|
|
101 |
- eval_batch_size: 32
|
102 |
- seed: 42
|
103 |
- distributed_type: multi-GPU
|
104 |
-
- num_devices:
|
105 |
-
- total_train_batch_size:
|
106 |
-
- total_eval_batch_size:
|
107 |
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
108 |
- lr_scheduler_type: cosine
|
109 |
-
-
|
|
|
110 |
|
111 |
### Training results
|
112 |
|
113 |
-
| Training Loss | Epoch
|
114 |
-
|
115 |
-
| No log | 0.
|
116 |
-
| 9.6746 | 66.6667 | 200 | 9.6817 |
|
117 |
|
118 |
|
119 |
### Framework versions
|
|
|
20 |
axolotl version: `0.6.0`
|
21 |
```yaml
|
22 |
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
|
23 |
+
batch_size: 128
|
24 |
bf16: true
|
25 |
chat_template: tokenizer_default_fallback_alpaca
|
26 |
datasets:
|
|
|
45 |
learning_rate: 0.0002
|
46 |
logging_steps: 10
|
47 |
lr_scheduler: cosine
|
48 |
+
max_steps: 10000
|
49 |
micro_batch_size: 32
|
50 |
model_type: AutoModelForCausalLM
|
51 |
num_epochs: 100
|
|
|
59 |
sequence_len: 2048
|
60 |
tokenizer_type: LlamaTokenizerFast
|
61 |
torch_dtype: bf16
|
62 |
+
training_args_kwargs:
|
63 |
+
hub_private_repo: true
|
64 |
trust_remote_code: true
|
65 |
val_set_size: 0.1
|
66 |
wandb_entity: ''
|
|
|
78 |
# test-repo
|
79 |
|
80 |
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the argilla/databricks-dolly-15k-curated-en dataset.
|
|
|
|
|
81 |
|
82 |
## Model description
|
83 |
|
|
|
101 |
- eval_batch_size: 32
|
102 |
- seed: 42
|
103 |
- distributed_type: multi-GPU
|
104 |
+
- num_devices: 4
|
105 |
+
- total_train_batch_size: 128
|
106 |
+
- total_eval_batch_size: 128
|
107 |
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
108 |
- lr_scheduler_type: cosine
|
109 |
+
- lr_scheduler_warmup_steps: 5
|
110 |
+
- training_steps: 100
|
111 |
|
112 |
### Training results
|
113 |
|
114 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
115 |
+
|:-------------:|:------:|:----:|:---------------:|
|
116 |
+
| No log | 0.1667 | 1 | 10.3764 |
|
|
|
117 |
|
118 |
|
119 |
### Framework versions
|