File size: 3,362 Bytes
77875f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
815a0c4
 
77875f7
 
 
 
815a0c4
77875f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
815a0c4
77875f7
 
 
 
 
 
 
 
894f232
77875f7
894f232
 
 
 
 
77875f7
 
815a0c4
 
894f232
815a0c4
 
 
 
 
 
 
 
 
77875f7
 
 
010e451
815a0c4
010e451
77875f7
010e451
 
77875f7
010e451
 
77875f7
010e451
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import pandas as pd
import numpy as np
import os
from tqdm import tqdm
import timm
import torchvision.transforms as T
from PIL import Image
import torch
from typing import List

def is_gpu_available():
    """Check if the python package `onnxruntime-gpu` is installed."""
    return torch.cuda.is_available()

WIDTH = 224
HEIGHT = 224

MODEL_PATH = "metaformer-s-224.pth"
MODEL_NAME = "caformer_s18.sail_in22k"

class PytorchWorker:
    """Run inference using ONNX runtime."""

    def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1605):

        def _load_model(model_name, model_path):

            print("Setting up Pytorch Model")
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            print(f"Using devide: {self.device}")

            model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False)
            weights = torch.load(model_path, map_location=self.device)
            model.load_state_dict({w.replace("model.", ""): v for w, v in weights.items()})

            return model.to(self.device).eval()

        self.model = _load_model(model_name, model_path)

        self.transforms = T.Compose([T.Resize((HEIGHT, WIDTH)),
                                     T.ToTensor(),
                                     T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])


    def predict_image(self, image: np.ndarray) -> List:
        """Run inference using ONNX runtime.

        :param image: Input image as numpy array.
        :return: A list with logits and confidences.
        """

        logits = self.model(self.transforms(image).unsqueeze(0).to(self.device))

        return logits.tolist()


def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
    """Make submission with given """

    model = PytorchWorker(model_path, model_name)

    predictions = []

    for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
        image_path = os.path.join(images_root_path, row.image_path.replace("jpg", "JPG"))

        test_image = Image.open(image_path).convert("RGB")

        logits = model.predict_image(test_image)

        predictions.append(np.argmax(logits))

    test_metadata["class_id"] = predictions
    
    user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")

    for ix, row in user_pred_df.iterrows():
        if row['class_id'] == 1604:
            user_pred_df.loc[ix, 'class_id'] = -1

    user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)

def test_submission():

    metadata_file_path = "../trial_test.csv"
    test_metadata = pd.read_csv(metadata_file_path)

    make_submission(
        test_metadata=test_metadata,
        model_path=MODEL_PATH,
        model_name=MODEL_NAME,
        images_root_path="../data/DF_FULL/"
    )


if __name__ == "__main__":

    # test_submission()

    import zipfile

    with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
        zip_ref.extractall("/tmp/data")

    metadata_file_path = "./FungiCLEF2024_TestMetadata.csv"
    test_metadata = pd.read_csv(metadata_file_path)

    make_submission(
        test_metadata=test_metadata,
        model_path=MODEL_PATH,
        model_name=MODEL_NAME
    )