File size: 3,331 Bytes
77875f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
815a0c4
77875f7
 
 
 
 
 
 
3735d66
 
 
77875f7
 
 
 
 
3735d66
77875f7
 
 
 
d10e961
77875f7
 
 
 
 
 
3735d66
77875f7
3735d66
77875f7
 
 
 
 
 
 
 
 
 
d10e961
77875f7
 
 
 
 
 
 
 
894f232
77875f7
894f232
 
 
 
 
77875f7
 
 
 
d10e961
3735d66
815a0c4
d10e961
3735d66
77875f7
3735d66
 
d10e961
3735d66
d10e961
 
 
 
 
3735d66
d10e961
 
3735d66
 
 
 
 
 
 
 
 
 
 
 
 
d10e961
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import pandas as pd
import numpy as np
import os
from tqdm import tqdm
import timm
import torchvision.transforms as T
from PIL import Image
import torch
from typing import List

def is_gpu_available():
    """Check if the python package `onnxruntime-gpu` is installed."""
    return torch.cuda.is_available()

class PytorchWorker:
    """Run inference using ONNX runtime."""

    def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1605):

        def _load_model(model_name, model_path):

            print("Setting up Pytorch Model")
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            print(f"Using devide: {self.device}")

            model = timm.create_model(model_name, num_classes=0, pretrained=False)
            # weights = torch.load(model_path, map_location=self.device)
            # model.load_state_dict({w.replace("model.", ""): v for w, v in weights.items()})

            return model.to(self.device).eval()

        self.model = _load_model(model_name, model_path)

        self.transforms = T.Compose([T.Resize((518, 518)),
                                     T.ToTensor(),
                                     T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])


    def predict_image(self, image: np.ndarray):
        """Run inference using ONNX runtime.

        :param image: Input image as numpy array.
        :return: A list with logits and confidences.
        """

        self.model(self.transforms(image).unsqueeze(0).to(self.device))

        return [-1]


def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
    """Make submission with given """

    model = PytorchWorker(model_path, model_name)

    predictions = []

    for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
        image_path = os.path.join(images_root_path, row.image_path) #.replace("jpg", "JPG"))

        test_image = Image.open(image_path).convert("RGB")

        logits = model.predict_image(test_image)

        predictions.append(np.argmax(logits))

    test_metadata["class_id"] = predictions
    
    user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")

    for ix, row in user_pred_df.iterrows():
        if row['class_id'] == 1604:
            user_pred_df.loc[ix, 'class_id'] = -1

    user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)

if __name__ == "__main__":

    MODEL_PATH = "metaformer-s-224.pth"
    MODEL_NAME = "timm/vit_base_patch14_reg4_dinov2.lvd142m"

    # Real submission
    # import zipfile

    # with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
    #     zip_ref.extractall("/tmp/data")

    # metadata_file_path = "./test_preprocessed.csv"
    # test_metadata = pd.read_csv(metadata_file_path)

    # make_submission(
    #     test_metadata=test_metadata,
    #     model_path=MODEL_PATH,
    #     model_name=MODEL_NAME
    # )

    # Test submission

    metadata_file_path = "../trial_submission.csv"

    test_metadata = pd.read_csv(metadata_file_path)

    make_submission(
        test_metadata=test_metadata,
        model_path=MODEL_PATH,
        model_name=MODEL_NAME,
        images_root_path="../data/DF_FULL"
    )