anon1751 commited on
Commit
3dc3b08
1 Parent(s): ca26153
Files changed (2) hide show
  1. README.md +79 -0
  2. assets/leaderboard.png +0 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ library_name: transformers
6
+ tags:
7
+ - Long Context
8
+ - chatglm
9
+ - llama
10
+ datasets:
11
+ - THUDM/LongAlign-10k
12
+ - THUDM/LongBench
13
+ ---
14
+ # LongAlign-7B-64k
15
+
16
+ <p align="center">
17
+ 🤗 <a href="https://huggingface.co/datasets/THUDM/LongAlign-10k" target="_blank">[LongAlign Dataset] </a> • 💻 <a href="https://github.com/THUDM/LongAlign" target="_blank">[Github Repo]</a> • 📃 <a href="https://arxiv.org/" target="_blank">[LongAlign Paper]</a>
18
+ </p>
19
+
20
+ **LongAlign** is the first full recipe for LLM alignment on long context. We propose the **LongAlign-10k** dataset, containing 10,000 long instruction data of 8k-64k in length. We investigate on trianing strategies, namely **packing (with loss weighting) and sorted batching**, which are all implemented in our code. For real-world long context evaluation, we introduce **Chat-LongBench** that evaluate the instruction-following capability on queries of 10k-100k length.
21
+
22
+ ## All Models
23
+
24
+ We open-sourced the following list of models:
25
+
26
+ |Model|Huggingface Repo|Description|
27
+ |---|---|---|
28
+ |**LongAlign-6B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-6B-64k-base) | **ChatGLM3-6B** with an extended 64k context window |
29
+ |**LongAlign-6B-64k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-6B-64k) | Chat model by LongAlign training on LongAlign-6B-64k-base|
30
+ |**LongAlign-7B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-7B-64k-base) | **Llama-2-7B** with an extended 64k context window |
31
+ |**LongAlign-7B-64k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-7B-64k) | Chat model by LongAlign training on LongAlign-7B-64k-base|
32
+ |**LongAlign-13B-64k-base**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-13B-64k-base) | **Llama-2-13B** with an extended 64k context window |
33
+ |**LongAlign-13B-64k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/LongAlign-13B-64k) | Chat model by LongAlign training on LongAlign-13B-64k-base|
34
+ |**ChatGLM3-6B-128k**| [🤗 Huggingface Repo](https://huggingface.co/THUDM/chatglm3-6b-128k) | **ChatGLM3-6B** with a 128k context window|
35
+
36
+ ![](assets/leaderboard.png)
37
+
38
+ ## Model usage
39
+ Chat prompt template for LongAlign-6B-64k:
40
+ ```text
41
+ [Round 1]
42
+
43
+ 问:Hi!
44
+
45
+ 答:Hello! What can I assist you today?
46
+
47
+ [Round 2]
48
+
49
+ 问:What should I do if I can't sleep at night?
50
+
51
+ 答:
52
+ ```
53
+ Chat prompt template for LongAlign-7B-64k and LongAlign-13B-64k:
54
+ ```text
55
+ [INST]Hi![/INST]Hello! What can I assist you today?
56
+
57
+ [INST]What should I do if I can't sleep at night?[/INST]
58
+ ```
59
+ ChatGLM3-6B-128k uses the same prompt template as [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b).
60
+
61
+ A simple demo for deployment of the model:
62
+ ```python
63
+ from transformers import AutoTokenizer, AutoModelForCausalLM
64
+ import torch
65
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/LongAlign-6B-64k", trust_remote_code=True)
66
+ model = AutoModelForCausalLM.from_pretrained("THUDM/LongAlign-6B-64k", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
67
+ model = model.eval()
68
+ query = open("assets/paper.txt").read() + "\n\nPlease summarize the paper."
69
+ response, history = model.chat(tokenizer, query, history=[], max_new_tokens=512, temperature=1)
70
+ print(response)
71
+ ```
72
+
73
+ ## Citation
74
+
75
+ If you find our work useful, please consider citing LongAlign:
76
+
77
+ ```
78
+
79
+ ```
assets/leaderboard.png ADDED