Update implementation
Browse files- config.json +1 -1
- configuration_chatglm.py +6 -5
- generation_config.json +5 -0
- modeling_chatglm.py +185 -84
- quantization.py +1 -3
- save_model.py +4 -0
- tokenization_chatglm.py +31 -10
config.json
CHANGED
@@ -35,7 +35,7 @@
|
|
35 |
"seq_length": 8192,
|
36 |
"use_cache": true,
|
37 |
"torch_dtype": "bfloat16",
|
38 |
-
"transformers_version": "4.
|
39 |
"tie_word_embeddings": false,
|
40 |
"eos_token_id": 2
|
41 |
}
|
|
|
35 |
"seq_length": 8192,
|
36 |
"use_cache": true,
|
37 |
"torch_dtype": "bfloat16",
|
38 |
+
"transformers_version": "4.30.2",
|
39 |
"tie_word_embeddings": false,
|
40 |
"eos_token_id": 2
|
41 |
}
|
configuration_chatglm.py
CHANGED
@@ -20,18 +20,19 @@ class ChatGLMConfig(PretrainedConfig):
|
|
20 |
post_layer_norm=True,
|
21 |
add_bias_linear=False,
|
22 |
add_qkv_bias=False,
|
23 |
-
interleaved_qkv=False,
|
24 |
bias_dropout_fusion=True,
|
25 |
-
rotary_percent=1.0,
|
26 |
multi_query_attention=False,
|
27 |
multi_query_group_num=1,
|
28 |
apply_query_key_layer_scaling=True,
|
29 |
attention_softmax_in_fp32=True,
|
30 |
fp32_residual_connection=False,
|
31 |
quantization_bit=0,
|
|
|
|
|
32 |
**kwargs
|
33 |
):
|
34 |
self.num_layers = num_layers
|
|
|
35 |
self.padded_vocab_size = padded_vocab_size
|
36 |
self.hidden_size = hidden_size
|
37 |
self.ffn_hidden_size = ffn_hidden_size
|
@@ -46,13 +47,13 @@ class ChatGLMConfig(PretrainedConfig):
|
|
46 |
self.post_layer_norm = post_layer_norm
|
47 |
self.add_bias_linear = add_bias_linear
|
48 |
self.add_qkv_bias = add_qkv_bias
|
49 |
-
self.interleaved_qkv = interleaved_qkv
|
50 |
self.bias_dropout_fusion = bias_dropout_fusion
|
51 |
-
self.rotary_percent = rotary_percent
|
52 |
self.multi_query_attention = multi_query_attention
|
53 |
self.multi_query_group_num = multi_query_group_num
|
54 |
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
55 |
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
56 |
self.fp32_residual_connection = fp32_residual_connection
|
57 |
self.quantization_bit = quantization_bit
|
58 |
-
|
|
|
|
|
|
20 |
post_layer_norm=True,
|
21 |
add_bias_linear=False,
|
22 |
add_qkv_bias=False,
|
|
|
23 |
bias_dropout_fusion=True,
|
|
|
24 |
multi_query_attention=False,
|
25 |
multi_query_group_num=1,
|
26 |
apply_query_key_layer_scaling=True,
|
27 |
attention_softmax_in_fp32=True,
|
28 |
fp32_residual_connection=False,
|
29 |
quantization_bit=0,
|
30 |
+
pre_seq_len=None,
|
31 |
+
prefix_projection=False,
|
32 |
**kwargs
|
33 |
):
|
34 |
self.num_layers = num_layers
|
35 |
+
self.vocab_size = padded_vocab_size
|
36 |
self.padded_vocab_size = padded_vocab_size
|
37 |
self.hidden_size = hidden_size
|
38 |
self.ffn_hidden_size = ffn_hidden_size
|
|
|
47 |
self.post_layer_norm = post_layer_norm
|
48 |
self.add_bias_linear = add_bias_linear
|
49 |
self.add_qkv_bias = add_qkv_bias
|
|
|
50 |
self.bias_dropout_fusion = bias_dropout_fusion
|
|
|
51 |
self.multi_query_attention = multi_query_attention
|
52 |
self.multi_query_group_num = multi_query_group_num
|
53 |
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
54 |
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
55 |
self.fp32_residual_connection = fp32_residual_connection
|
56 |
self.quantization_bit = quantization_bit
|
57 |
+
self.pre_seq_len = pre_seq_len
|
58 |
+
self.prefix_projection = prefix_projection
|
59 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"transformers_version": "4.30.2"
|
5 |
+
}
|
modeling_chatglm.py
CHANGED
@@ -35,12 +35,12 @@ if sys.platform != 'darwin':
|
|
35 |
|
36 |
logger = logging.get_logger(__name__)
|
37 |
|
38 |
-
_CHECKPOINT_FOR_DOC = "THUDM/
|
39 |
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
40 |
|
41 |
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
42 |
-
"THUDM/
|
43 |
-
# See all ChatGLM
|
44 |
]
|
45 |
|
46 |
|
@@ -56,6 +56,38 @@ class InvalidScoreLogitsProcessor(LogitsProcessor):
|
|
56 |
return scores
|
57 |
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def split_tensor_along_last_dim(
|
60 |
tensor: torch.Tensor,
|
61 |
num_partitions: int,
|
@@ -87,12 +119,12 @@ def split_tensor_along_last_dim(
|
|
87 |
class RotaryEmbedding(nn.Module):
|
88 |
def __init__(self, dim, original_impl=False, device=None, dtype=None):
|
89 |
super().__init__()
|
90 |
-
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device
|
91 |
self.register_buffer("inv_freq", inv_freq)
|
92 |
self.dim = dim
|
93 |
self.original_impl = original_impl
|
94 |
|
95 |
-
def
|
96 |
self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
|
97 |
):
|
98 |
"""Enhanced Transformer with Rotary Position Embedding.
|
@@ -118,14 +150,13 @@ class RotaryEmbedding(nn.Module):
|
|
118 |
return cache
|
119 |
|
120 |
def forward(self, max_seq_len, offset=0):
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
)
|
125 |
|
126 |
|
127 |
@torch.jit.script
|
128 |
-
def
|
129 |
# x: [sq, b, np, hn]
|
130 |
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
131 |
rot_dim = rope_cache.shape[-2] * 2
|
@@ -151,10 +182,12 @@ class RMSNorm(torch.nn.Module):
|
|
151 |
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
|
152 |
self.eps = eps
|
153 |
|
154 |
-
def forward(self,
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
158 |
|
159 |
|
160 |
class CoreAttention(torch.nn.Module):
|
@@ -311,8 +344,6 @@ class SelfAttention(torch.nn.Module):
|
|
311 |
device=device, **_config_to_kwargs(config)
|
312 |
)
|
313 |
|
314 |
-
self.interleaved_qkv = config.interleaved_qkv
|
315 |
-
|
316 |
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
|
317 |
if self.multi_query_attention:
|
318 |
num_attention_heads = self.num_multi_query_groups_per_partition
|
@@ -362,40 +393,25 @@ class SelfAttention(torch.nn.Module):
|
|
362 |
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
363 |
)
|
364 |
else:
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
370 |
|
371 |
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
372 |
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
373 |
|
374 |
-
if not self.interleaved_qkv:
|
375 |
-
query_layer = query_layer.view(
|
376 |
-
query_layer.size()[:-1] + (
|
377 |
-
self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
378 |
-
).contiguous()
|
379 |
-
key_layer = key_layer.view(
|
380 |
-
key_layer.size()[:-1] + (
|
381 |
-
self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
382 |
-
).contiguous()
|
383 |
-
value_layer = value_layer.view(
|
384 |
-
value_layer.size()[:-1] + (
|
385 |
-
self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
386 |
-
).contiguous()
|
387 |
-
|
388 |
# apply relative positional encoding (rotary embedding)
|
389 |
if rotary_pos_emb is not None:
|
390 |
-
query_layer =
|
391 |
-
key_layer =
|
392 |
|
393 |
# adjust key and value for inference
|
|
|
|
|
|
|
|
|
394 |
if use_cache:
|
395 |
-
if kv_cache is not None:
|
396 |
-
cache_k, cache_v = kv_cache
|
397 |
-
key_layer = torch.cat((cache_k, key_layer), dim=0)
|
398 |
-
value_layer = torch.cat((cache_v, value_layer), dim=0)
|
399 |
kv_cache = (key_layer, value_layer)
|
400 |
else:
|
401 |
kv_cache = None
|
@@ -582,6 +598,8 @@ class GLMTransformer(torch.nn.Module):
|
|
582 |
self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
583 |
dtype=config.torch_dtype)
|
584 |
|
|
|
|
|
585 |
def _get_layer(self, layer_number):
|
586 |
return self.layers[layer_number]
|
587 |
|
@@ -593,6 +611,13 @@ class GLMTransformer(torch.nn.Module):
|
|
593 |
if not kv_caches:
|
594 |
kv_caches = [None for _ in range(self.num_layers)]
|
595 |
presents = () if use_cache else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
596 |
all_self_attentions = None
|
597 |
all_hidden_states = () if output_hidden_states else None
|
598 |
for index in range(self.num_layers):
|
@@ -600,14 +625,24 @@ class GLMTransformer(torch.nn.Module):
|
|
600 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
601 |
|
602 |
layer = self._get_layer(index)
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
611 |
if use_cache:
|
612 |
presents = presents + (kv_cache,)
|
613 |
|
@@ -661,7 +696,7 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
661 |
return position_ids
|
662 |
|
663 |
def _set_gradient_checkpointing(self, module, value=False):
|
664 |
-
if isinstance(module,
|
665 |
module.gradient_checkpointing = value
|
666 |
|
667 |
|
@@ -704,6 +739,9 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
704 |
if device is not None:
|
705 |
init_kwargs["device"] = device
|
706 |
self.embedding = init_method(Embedding, config, **init_kwargs)
|
|
|
|
|
|
|
707 |
|
708 |
# Rotary positional embeddings
|
709 |
self.seq_length = config.seq_length
|
@@ -711,18 +749,37 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
711 |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
712 |
)
|
713 |
|
714 |
-
|
715 |
-
rotary_dim = int(rotary_dim * config.rotary_percent)
|
716 |
-
|
717 |
-
# partial rotary embeddings, which is better than full rotary
|
718 |
-
# Wang and Komatsuzaki et al
|
719 |
-
# https://github.com/kingoflolz/mesh-transformer-jax/
|
720 |
-
self.rotary_pos_emb = RotaryEmbedding(rotary_dim, original_impl=config.original_rope, device=device,
|
721 |
dtype=config.torch_dtype)
|
722 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
723 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
724 |
dtype=config.torch_dtype, **init_kwargs)
|
725 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
726 |
|
727 |
def forward(
|
728 |
self,
|
@@ -747,8 +804,17 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
747 |
if inputs_embeds is None:
|
748 |
inputs_embeds = self.embedding(input_ids)
|
749 |
|
750 |
-
if
|
751 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
752 |
|
753 |
# Rotary positional embeddings
|
754 |
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
@@ -820,6 +886,7 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
820 |
[position_ids, new_position_id], dim=-1
|
821 |
)
|
822 |
|
|
|
823 |
return model_kwargs
|
824 |
|
825 |
def prepare_inputs_for_generation(
|
@@ -828,20 +895,21 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
828 |
past_key_values: Optional[torch.Tensor] = None,
|
829 |
attention_mask: Optional[torch.Tensor] = None,
|
830 |
position_ids: Optional[torch.Tensor] = None,
|
831 |
-
|
832 |
**kwargs
|
833 |
) -> dict:
|
834 |
# only last token for input_ids if past is not None
|
835 |
-
if
|
836 |
-
|
837 |
-
|
838 |
position_ids = position_ids[..., -1:]
|
839 |
input_ids = input_ids[:, -1:]
|
840 |
return {
|
841 |
"input_ids": input_ids,
|
842 |
"past_key_values": past_key_values,
|
843 |
"position_ids": position_ids,
|
844 |
-
"attention_mask": attention_mask
|
|
|
845 |
}
|
846 |
|
847 |
def forward(
|
@@ -856,6 +924,7 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
856 |
output_attentions: Optional[bool] = None,
|
857 |
output_hidden_states: Optional[bool] = None,
|
858 |
return_dict: Optional[bool] = None,
|
|
|
859 |
):
|
860 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
861 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
@@ -872,7 +941,8 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
872 |
)
|
873 |
|
874 |
hidden_states = transformer_outputs[0]
|
875 |
-
|
|
|
876 |
lm_logits = self.transformer.output_layer(hidden_states)
|
877 |
lm_logits = lm_logits.transpose(0, 1).contiguous()
|
878 |
|
@@ -927,16 +997,25 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
927 |
return response
|
928 |
|
929 |
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
|
930 |
-
prompt =
|
931 |
-
for i, (old_query, response) in enumerate(history):
|
932 |
-
prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response)
|
933 |
-
prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
934 |
inputs = tokenizer([prompt], return_tensors="pt")
|
935 |
inputs = inputs.to(self.device)
|
936 |
return inputs
|
937 |
|
938 |
-
|
939 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
940 |
do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, **kwargs):
|
941 |
if history is None:
|
942 |
history = []
|
@@ -953,9 +1032,10 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
953 |
history = history + [(query, response)]
|
954 |
return response, history
|
955 |
|
956 |
-
@torch.
|
957 |
-
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None,
|
958 |
-
do_sample=True, top_p=0.
|
|
|
959 |
if history is None:
|
960 |
history = []
|
961 |
if logits_processor is None:
|
@@ -963,15 +1043,33 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
963 |
logits_processor.append(InvalidScoreLogitsProcessor())
|
964 |
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
965 |
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
966 |
-
|
967 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
968 |
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
969 |
response = tokenizer.decode(outputs)
|
970 |
-
response
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
|
|
|
|
|
|
|
|
975 |
def stream_generate(
|
976 |
self,
|
977 |
input_ids,
|
@@ -979,6 +1077,7 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
979 |
logits_processor: Optional[LogitsProcessorList] = None,
|
980 |
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
981 |
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
|
|
982 |
**kwargs,
|
983 |
):
|
984 |
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
@@ -1067,11 +1166,13 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1067 |
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1068 |
)
|
1069 |
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
1070 |
-
|
|
|
|
|
|
|
1071 |
# stop when each sentence is finished, or if we exceed the maximum length
|
1072 |
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1073 |
break
|
1074 |
-
yield input_ids
|
1075 |
|
1076 |
def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
|
1077 |
if bits == 0:
|
|
|
35 |
|
36 |
logger = logging.get_logger(__name__)
|
37 |
|
38 |
+
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM2-6B"
|
39 |
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
40 |
|
41 |
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
42 |
+
"THUDM/chatglm2-6b",
|
43 |
+
# See all ChatGLM models at https://huggingface.co/models?filter=chatglm
|
44 |
]
|
45 |
|
46 |
|
|
|
56 |
return scores
|
57 |
|
58 |
|
59 |
+
class PrefixEncoder(torch.nn.Module):
|
60 |
+
"""
|
61 |
+
The torch.nn model to encode the prefix
|
62 |
+
Input shape: (batch-size, prefix-length)
|
63 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self, config: ChatGLMConfig):
|
67 |
+
super().__init__()
|
68 |
+
self.prefix_projection = config.prefix_projection
|
69 |
+
if self.prefix_projection:
|
70 |
+
# Use a two-layer MLP to encode the prefix
|
71 |
+
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
72 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
|
73 |
+
self.trans = torch.nn.Sequential(
|
74 |
+
torch.nn.Linear(kv_size, config.hidden_size),
|
75 |
+
torch.nn.Tanh(),
|
76 |
+
torch.nn.Linear(config.hidden_size, kv_size)
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len,
|
80 |
+
config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
|
81 |
+
|
82 |
+
def forward(self, prefix: torch.Tensor):
|
83 |
+
if self.prefix_projection:
|
84 |
+
prefix_tokens = self.embedding(prefix)
|
85 |
+
past_key_values = self.trans(prefix_tokens)
|
86 |
+
else:
|
87 |
+
past_key_values = self.embedding(prefix)
|
88 |
+
return past_key_values
|
89 |
+
|
90 |
+
|
91 |
def split_tensor_along_last_dim(
|
92 |
tensor: torch.Tensor,
|
93 |
num_partitions: int,
|
|
|
119 |
class RotaryEmbedding(nn.Module):
|
120 |
def __init__(self, dim, original_impl=False, device=None, dtype=None):
|
121 |
super().__init__()
|
122 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
|
123 |
self.register_buffer("inv_freq", inv_freq)
|
124 |
self.dim = dim
|
125 |
self.original_impl = original_impl
|
126 |
|
127 |
+
def forward_impl(
|
128 |
self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
|
129 |
):
|
130 |
"""Enhanced Transformer with Rotary Position Embedding.
|
|
|
150 |
return cache
|
151 |
|
152 |
def forward(self, max_seq_len, offset=0):
|
153 |
+
return self.forward_impl(
|
154 |
+
max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
|
155 |
+
)
|
|
|
156 |
|
157 |
|
158 |
@torch.jit.script
|
159 |
+
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
160 |
# x: [sq, b, np, hn]
|
161 |
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
162 |
rot_dim = rope_cache.shape[-2] * 2
|
|
|
182 |
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
|
183 |
self.eps = eps
|
184 |
|
185 |
+
def forward(self, hidden_states: torch.Tensor):
|
186 |
+
input_dtype = hidden_states.dtype
|
187 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
188 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
189 |
+
|
190 |
+
return (self.weight * hidden_states).to(input_dtype)
|
191 |
|
192 |
|
193 |
class CoreAttention(torch.nn.Module):
|
|
|
344 |
device=device, **_config_to_kwargs(config)
|
345 |
)
|
346 |
|
|
|
|
|
347 |
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
|
348 |
if self.multi_query_attention:
|
349 |
num_attention_heads = self.num_multi_query_groups_per_partition
|
|
|
393 |
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
394 |
)
|
395 |
else:
|
396 |
+
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
397 |
+
(self.num_attention_heads_per_partition,
|
398 |
+
3 * self.hidden_size_per_attention_head)
|
399 |
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
|
|
400 |
|
401 |
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
402 |
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
403 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
# apply relative positional encoding (rotary embedding)
|
405 |
if rotary_pos_emb is not None:
|
406 |
+
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
407 |
+
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
408 |
|
409 |
# adjust key and value for inference
|
410 |
+
if kv_cache is not None:
|
411 |
+
cache_k, cache_v = kv_cache
|
412 |
+
key_layer = torch.cat((cache_k, key_layer), dim=0)
|
413 |
+
value_layer = torch.cat((cache_v, value_layer), dim=0)
|
414 |
if use_cache:
|
|
|
|
|
|
|
|
|
415 |
kv_cache = (key_layer, value_layer)
|
416 |
else:
|
417 |
kv_cache = None
|
|
|
598 |
self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
599 |
dtype=config.torch_dtype)
|
600 |
|
601 |
+
self.gradient_checkpointing = False
|
602 |
+
|
603 |
def _get_layer(self, layer_number):
|
604 |
return self.layers[layer_number]
|
605 |
|
|
|
611 |
if not kv_caches:
|
612 |
kv_caches = [None for _ in range(self.num_layers)]
|
613 |
presents = () if use_cache else None
|
614 |
+
if self.gradient_checkpointing and self.training:
|
615 |
+
if use_cache:
|
616 |
+
logger.warning_once(
|
617 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
618 |
+
)
|
619 |
+
use_cache = False
|
620 |
+
|
621 |
all_self_attentions = None
|
622 |
all_hidden_states = () if output_hidden_states else None
|
623 |
for index in range(self.num_layers):
|
|
|
625 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
626 |
|
627 |
layer = self._get_layer(index)
|
628 |
+
if self.gradient_checkpointing and self.training:
|
629 |
+
layer_ret = torch.utils.checkpoint.checkpoint(
|
630 |
+
layer,
|
631 |
+
hidden_states,
|
632 |
+
attention_mask,
|
633 |
+
rotary_pos_emb,
|
634 |
+
kv_caches[index],
|
635 |
+
use_cache
|
636 |
+
)
|
637 |
+
else:
|
638 |
+
layer_ret = layer(
|
639 |
+
hidden_states,
|
640 |
+
attention_mask,
|
641 |
+
rotary_pos_emb,
|
642 |
+
kv_cache=kv_caches[index],
|
643 |
+
use_cache=use_cache
|
644 |
+
)
|
645 |
+
hidden_states, kv_cache = layer_ret
|
646 |
if use_cache:
|
647 |
presents = presents + (kv_cache,)
|
648 |
|
|
|
696 |
return position_ids
|
697 |
|
698 |
def _set_gradient_checkpointing(self, module, value=False):
|
699 |
+
if isinstance(module, GLMTransformer):
|
700 |
module.gradient_checkpointing = value
|
701 |
|
702 |
|
|
|
739 |
if device is not None:
|
740 |
init_kwargs["device"] = device
|
741 |
self.embedding = init_method(Embedding, config, **init_kwargs)
|
742 |
+
self.num_layers = config.num_layers
|
743 |
+
self.multi_query_group_num = config.multi_query_group_num
|
744 |
+
self.kv_channels = config.kv_channels
|
745 |
|
746 |
# Rotary positional embeddings
|
747 |
self.seq_length = config.seq_length
|
|
|
749 |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
750 |
)
|
751 |
|
752 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
|
|
|
|
|
|
|
|
|
|
|
|
|
753 |
dtype=config.torch_dtype)
|
754 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
755 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
756 |
dtype=config.torch_dtype, **init_kwargs)
|
757 |
+
self.pre_seq_len = config.pre_seq_len
|
758 |
+
self.prefix_projection = config.prefix_projection
|
759 |
+
if self.pre_seq_len is not None:
|
760 |
+
for param in self.parameters():
|
761 |
+
param.requires_grad = False
|
762 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
763 |
+
self.prefix_encoder = PrefixEncoder(config)
|
764 |
+
self.dropout = torch.nn.Dropout(0.1)
|
765 |
+
|
766 |
+
def get_input_embeddings(self):
|
767 |
+
return self.embedding.word_embeddings
|
768 |
+
|
769 |
+
def get_prompt(self, batch_size, device, dtype=torch.half):
|
770 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
771 |
+
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
772 |
+
past_key_values = past_key_values.view(
|
773 |
+
batch_size,
|
774 |
+
self.pre_seq_len,
|
775 |
+
self.num_layers * 2,
|
776 |
+
self.multi_query_group_num,
|
777 |
+
self.kv_channels
|
778 |
+
)
|
779 |
+
# seq_len, b, nh, hidden_size
|
780 |
+
past_key_values = self.dropout(past_key_values)
|
781 |
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
782 |
+
return past_key_values
|
783 |
|
784 |
def forward(
|
785 |
self,
|
|
|
804 |
if inputs_embeds is None:
|
805 |
inputs_embeds = self.embedding(input_ids)
|
806 |
|
807 |
+
if self.pre_seq_len is not None:
|
808 |
+
if past_key_values is None:
|
809 |
+
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
|
810 |
+
dtype=inputs_embeds.dtype)
|
811 |
+
if attention_mask is not None:
|
812 |
+
attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
|
813 |
+
attention_mask], dim=-1)
|
814 |
+
|
815 |
+
if full_attention_mask is None:
|
816 |
+
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
817 |
+
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
|
818 |
|
819 |
# Rotary positional embeddings
|
820 |
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
|
|
886 |
[position_ids, new_position_id], dim=-1
|
887 |
)
|
888 |
|
889 |
+
model_kwargs["is_first_forward"] = False
|
890 |
return model_kwargs
|
891 |
|
892 |
def prepare_inputs_for_generation(
|
|
|
895 |
past_key_values: Optional[torch.Tensor] = None,
|
896 |
attention_mask: Optional[torch.Tensor] = None,
|
897 |
position_ids: Optional[torch.Tensor] = None,
|
898 |
+
is_first_forward: bool = True,
|
899 |
**kwargs
|
900 |
) -> dict:
|
901 |
# only last token for input_ids if past is not None
|
902 |
+
if position_ids is None:
|
903 |
+
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
|
904 |
+
if not is_first_forward:
|
905 |
position_ids = position_ids[..., -1:]
|
906 |
input_ids = input_ids[:, -1:]
|
907 |
return {
|
908 |
"input_ids": input_ids,
|
909 |
"past_key_values": past_key_values,
|
910 |
"position_ids": position_ids,
|
911 |
+
"attention_mask": attention_mask,
|
912 |
+
"return_last_logit": True
|
913 |
}
|
914 |
|
915 |
def forward(
|
|
|
924 |
output_attentions: Optional[bool] = None,
|
925 |
output_hidden_states: Optional[bool] = None,
|
926 |
return_dict: Optional[bool] = None,
|
927 |
+
return_last_logit: Optional[bool] = False,
|
928 |
):
|
929 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
930 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
941 |
)
|
942 |
|
943 |
hidden_states = transformer_outputs[0]
|
944 |
+
if return_last_logit:
|
945 |
+
hidden_states = hidden_states[-1:]
|
946 |
lm_logits = self.transformer.output_layer(hidden_states)
|
947 |
lm_logits = lm_logits.transpose(0, 1).contiguous()
|
948 |
|
|
|
997 |
return response
|
998 |
|
999 |
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
|
1000 |
+
prompt = tokenizer.build_prompt(query, history=history)
|
|
|
|
|
|
|
1001 |
inputs = tokenizer([prompt], return_tensors="pt")
|
1002 |
inputs = inputs.to(self.device)
|
1003 |
return inputs
|
1004 |
|
1005 |
+
def build_stream_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None):
|
1006 |
+
if history:
|
1007 |
+
prompt = "\n\n[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
1008 |
+
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
|
1009 |
+
input_ids = input_ids[1:]
|
1010 |
+
inputs = tokenizer.batch_encode_plus([(input_ids, None)], return_tensors="pt", add_special_tokens=False)
|
1011 |
+
else:
|
1012 |
+
prompt = "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
1013 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1014 |
+
inputs = inputs.to(self.device)
|
1015 |
+
return inputs
|
1016 |
+
|
1017 |
+
@torch.inference_mode()
|
1018 |
+
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192, num_beams=1,
|
1019 |
do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, **kwargs):
|
1020 |
if history is None:
|
1021 |
history = []
|
|
|
1032 |
history = history + [(query, response)]
|
1033 |
return response, history
|
1034 |
|
1035 |
+
@torch.inference_mode()
|
1036 |
+
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values=None,
|
1037 |
+
max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
|
1038 |
+
return_past_key_values=False, **kwargs):
|
1039 |
if history is None:
|
1040 |
history = []
|
1041 |
if logits_processor is None:
|
|
|
1043 |
logits_processor.append(InvalidScoreLogitsProcessor())
|
1044 |
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
1045 |
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1046 |
+
if past_key_values is None and not return_past_key_values:
|
1047 |
+
inputs = self.build_inputs(tokenizer, query, history=history)
|
1048 |
+
else:
|
1049 |
+
inputs = self.build_stream_inputs(tokenizer, query, history=history)
|
1050 |
+
if past_key_values is not None:
|
1051 |
+
past_length = past_key_values[0][0].shape[0]
|
1052 |
+
if self.transformer.pre_seq_len is not None:
|
1053 |
+
past_length -= self.transformer.pre_seq_len
|
1054 |
+
inputs.position_ids += past_length
|
1055 |
+
attention_mask = inputs.attention_mask
|
1056 |
+
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
|
1057 |
+
inputs['attention_mask'] = attention_mask
|
1058 |
+
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
|
1059 |
+
return_past_key_values=return_past_key_values, **gen_kwargs):
|
1060 |
+
if return_past_key_values:
|
1061 |
+
outputs, past_key_values = outputs
|
1062 |
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1063 |
response = tokenizer.decode(outputs)
|
1064 |
+
if response and response[-1] != "�":
|
1065 |
+
response = self.process_response(response)
|
1066 |
+
new_history = history + [(query, response)]
|
1067 |
+
if return_past_key_values:
|
1068 |
+
yield response, new_history, past_key_values
|
1069 |
+
else:
|
1070 |
+
yield response, new_history
|
1071 |
+
|
1072 |
+
@torch.inference_mode()
|
1073 |
def stream_generate(
|
1074 |
self,
|
1075 |
input_ids,
|
|
|
1077 |
logits_processor: Optional[LogitsProcessorList] = None,
|
1078 |
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1079 |
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1080 |
+
return_past_key_values=False,
|
1081 |
**kwargs,
|
1082 |
):
|
1083 |
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
|
|
1166 |
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1167 |
)
|
1168 |
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
1169 |
+
if return_past_key_values:
|
1170 |
+
yield input_ids, outputs.past_key_values
|
1171 |
+
else:
|
1172 |
+
yield input_ids
|
1173 |
# stop when each sentence is finished, or if we exceed the maximum length
|
1174 |
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1175 |
break
|
|
|
1176 |
|
1177 |
def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
|
1178 |
if bits == 0:
|
quantization.py
CHANGED
@@ -24,7 +24,7 @@ try:
|
|
24 |
for name in self._function_names:
|
25 |
setattr(self, name, KernelFunction(self._cmodule, name))
|
26 |
|
27 |
-
quantization_code = "
|
28 |
|
29 |
kernels = Kernel(
|
30 |
bz2.decompress(base64.b64decode(quantization_code)),
|
@@ -32,10 +32,8 @@ try:
|
|
32 |
"int4WeightCompression",
|
33 |
"int4WeightExtractionFloat",
|
34 |
"int4WeightExtractionHalf",
|
35 |
-
"int4WeightExtractionBFloat16",
|
36 |
"int8WeightExtractionFloat",
|
37 |
"int8WeightExtractionHalf",
|
38 |
-
"int8WeightExtractionBFloat16",
|
39 |
],
|
40 |
)
|
41 |
except Exception as exception:
|
|
|
24 |
for name in self._function_names:
|
25 |
setattr(self, name, KernelFunction(self._cmodule, name))
|
26 |
|
27 |
+
quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
|
28 |
|
29 |
kernels = Kernel(
|
30 |
bz2.decompress(base64.b64decode(quantization_code)),
|
|
|
32 |
"int4WeightCompression",
|
33 |
"int4WeightExtractionFloat",
|
34 |
"int4WeightExtractionHalf",
|
|
|
35 |
"int8WeightExtractionFloat",
|
36 |
"int8WeightExtractionHalf",
|
|
|
37 |
],
|
38 |
)
|
39 |
except Exception as exception:
|
save_model.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel
|
2 |
+
|
3 |
+
model = AutoModel.from_pretrained("/mnt/vepfs/qinkai/release/codegeex2-6b/", trust_remote_code=True).cuda()
|
4 |
+
model.save_pretrained("./", max_shard_size="2000MB")
|
tokenization_chatglm.py
CHANGED
@@ -17,7 +17,7 @@ class SPTokenizer:
|
|
17 |
self.n_words: int = self.sp_model.vocab_size()
|
18 |
self.bos_id: int = self.sp_model.bos_id()
|
19 |
self.eos_id: int = self.sp_model.eos_id()
|
20 |
-
self.pad_id: int = self.sp_model.
|
21 |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
22 |
|
23 |
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"]
|
@@ -55,7 +55,7 @@ class SPTokenizer:
|
|
55 |
|
56 |
def convert_id_to_token(self, index):
|
57 |
"""Converts an index (integer) in a token (str) using the vocab."""
|
58 |
-
if index in self.index_special_tokens:
|
59 |
return ""
|
60 |
return self.sp_model.IdToPiece(index)
|
61 |
|
@@ -65,10 +65,11 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
65 |
|
66 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
67 |
|
68 |
-
def __init__(self, vocab_file, padding_side="left", **kwargs):
|
69 |
-
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=
|
70 |
self.name = "GLMTokenizer"
|
71 |
|
|
|
72 |
self.tokenizer = SPTokenizer(vocab_file)
|
73 |
self.special_tokens = {
|
74 |
"<bos>": self.tokenizer.bos_id,
|
@@ -82,14 +83,26 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
82 |
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
83 |
return self.tokenizer.special_tokens[token]
|
84 |
|
|
|
|
|
|
|
|
|
85 |
@property
|
86 |
def pad_token(self) -> str:
|
87 |
-
return "
|
88 |
|
89 |
@property
|
90 |
def pad_token_id(self):
|
91 |
return self.get_command("<pad>")
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
@property
|
94 |
def vocab_size(self):
|
95 |
return self.tokenizer.n_words
|
@@ -146,6 +159,15 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
146 |
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
147 |
return prefix_tokens
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
def build_inputs_with_special_tokens(
|
150 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
151 |
) -> List[int]:
|
@@ -217,12 +239,11 @@ class ChatGLMTokenizer(PreTrainedTokenizer):
|
|
217 |
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
218 |
|
219 |
# Initialize attention mask if not present.
|
220 |
-
if
|
221 |
-
|
222 |
-
encoded_inputs["attention_mask"] = [1] * seq_length
|
223 |
|
224 |
-
|
225 |
-
|
226 |
|
227 |
if needs_to_be_padded:
|
228 |
difference = max_length - len(required_input)
|
|
|
17 |
self.n_words: int = self.sp_model.vocab_size()
|
18 |
self.bos_id: int = self.sp_model.bos_id()
|
19 |
self.eos_id: int = self.sp_model.eos_id()
|
20 |
+
self.pad_id: int = self.sp_model.unk_id()
|
21 |
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
22 |
|
23 |
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"]
|
|
|
55 |
|
56 |
def convert_id_to_token(self, index):
|
57 |
"""Converts an index (integer) in a token (str) using the vocab."""
|
58 |
+
if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
|
59 |
return ""
|
60 |
return self.sp_model.IdToPiece(index)
|
61 |
|
|
|
65 |
|
66 |
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
67 |
|
68 |
+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
|
69 |
+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
|
70 |
self.name = "GLMTokenizer"
|
71 |
|
72 |
+
self.vocab_file = vocab_file
|
73 |
self.tokenizer = SPTokenizer(vocab_file)
|
74 |
self.special_tokens = {
|
75 |
"<bos>": self.tokenizer.bos_id,
|
|
|
83 |
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
84 |
return self.tokenizer.special_tokens[token]
|
85 |
|
86 |
+
@property
|
87 |
+
def unk_token(self) -> str:
|
88 |
+
return "<unk>"
|
89 |
+
|
90 |
@property
|
91 |
def pad_token(self) -> str:
|
92 |
+
return "<unk>"
|
93 |
|
94 |
@property
|
95 |
def pad_token_id(self):
|
96 |
return self.get_command("<pad>")
|
97 |
|
98 |
+
@property
|
99 |
+
def eos_token(self) -> str:
|
100 |
+
return "</s>"
|
101 |
+
|
102 |
+
@property
|
103 |
+
def eos_token_id(self):
|
104 |
+
return self.get_command("<eos>")
|
105 |
+
|
106 |
@property
|
107 |
def vocab_size(self):
|
108 |
return self.tokenizer.n_words
|
|
|
159 |
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
160 |
return prefix_tokens
|
161 |
|
162 |
+
def build_prompt(self, query, history=None):
|
163 |
+
if history is None:
|
164 |
+
history = []
|
165 |
+
prompt = ""
|
166 |
+
for i, (old_query, response) in enumerate(history):
|
167 |
+
prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response)
|
168 |
+
prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
169 |
+
return prompt
|
170 |
+
|
171 |
def build_inputs_with_special_tokens(
|
172 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
173 |
) -> List[int]:
|
|
|
239 |
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
240 |
|
241 |
# Initialize attention mask if not present.
|
242 |
+
if "attention_mask" not in encoded_inputs:
|
243 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
|
|
244 |
|
245 |
+
if "position_ids" not in encoded_inputs:
|
246 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
247 |
|
248 |
if needs_to_be_padded:
|
249 |
difference = max_length - len(required_input)
|