nielsr HF staff commited on
Commit
6e8bac3
·
1 Parent(s): cf6d4b6

Add print statements

Browse files
Files changed (1) hide show
  1. modeling_cogvlm.py +7 -7
modeling_cogvlm.py CHANGED
@@ -241,7 +241,7 @@ class VisionExpertAttention(nn.Module):
241
  key_states = self._transpose_for_scores(key_states) # B, H, L, HD
242
  value_states = self._transpose_for_scores(value_states) # B, H, L, HD
243
 
244
- if print_values:
245
 
246
  # torch.save(query_states, "query_states.pt")
247
  # torch.save(key_states, "key_states.pt")
@@ -325,13 +325,13 @@ class CogVLMDecoderLayer(nn.Module):
325
  ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
326
  residual = hidden_states
327
 
328
- if print_values:
329
- print("Hidden states before RMS norm:", hidden_states[0, :3, :3])
330
 
331
  hidden_states = self.input_layernorm(hidden_states)
332
 
333
- if print_values:
334
- print("Hidden states after RMS norm, before self attention:", hidden_states[0,:3,:3])
335
 
336
  # Self Attention
337
  hidden_states, self_attn_weights, present_key_value = self.self_attn(
@@ -345,8 +345,8 @@ class CogVLMDecoderLayer(nn.Module):
345
  print_values=print_values,
346
  )
347
 
348
- if print_values:
349
- print("Hidden states after self attention:", hidden_states[0,:3,:3])
350
 
351
  hidden_states = residual + hidden_states
352
 
 
241
  key_states = self._transpose_for_scores(key_states) # B, H, L, HD
242
  value_states = self._transpose_for_scores(value_states) # B, H, L, HD
243
 
244
+ # if print_values:
245
 
246
  # torch.save(query_states, "query_states.pt")
247
  # torch.save(key_states, "key_states.pt")
 
325
  ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
326
  residual = hidden_states
327
 
328
+ # if print_values:
329
+ # print("Hidden states before RMS norm:", hidden_states[0, :3, :3])
330
 
331
  hidden_states = self.input_layernorm(hidden_states)
332
 
333
+ # if print_values:
334
+ # print("Hidden states after RMS norm, before self attention:", hidden_states[0,:3,:3])
335
 
336
  # Self Attention
337
  hidden_states, self_attn_weights, present_key_value = self.self_attn(
 
345
  print_values=print_values,
346
  )
347
 
348
+ # if print_values:
349
+ # print("Hidden states after self attention:", hidden_states[0,:3,:3])
350
 
351
  hidden_states = residual + hidden_states
352