zR
commited on
Commit
•
534e83c
1
Parent(s):
76f71fd
add flash-attn
Browse files- modeling_chatglm.py +206 -81
modeling_chatglm.py
CHANGED
@@ -21,12 +21,17 @@ from transformers.modeling_outputs import (
|
|
21 |
SequenceClassifierOutputWithPast,
|
22 |
)
|
23 |
from transformers.modeling_utils import PreTrainedModel
|
24 |
-
from transformers.utils import logging, is_torch_npu_available
|
|
|
25 |
from transformers.generation.logits_process import LogitsProcessor
|
26 |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
27 |
|
28 |
from .configuration_chatglm import ChatGLMConfig
|
29 |
|
|
|
|
|
|
|
|
|
30 |
# flags required to enable jit fusion kernels
|
31 |
|
32 |
if sys.platform != 'darwin' and not is_torch_npu_available():
|
@@ -40,6 +45,7 @@ logger = logging.get_logger(__name__)
|
|
40 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
41 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
42 |
|
|
|
43 |
def default_init(cls, *args, **kwargs):
|
44 |
return cls(*args, **kwargs)
|
45 |
|
@@ -159,12 +165,13 @@ class RMSNorm(torch.nn.Module):
|
|
159 |
class CoreAttention(torch.nn.Module):
|
160 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
161 |
super(CoreAttention, self).__init__()
|
162 |
-
|
163 |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
164 |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
165 |
if self.apply_query_key_layer_scaling:
|
166 |
self.attention_softmax_in_fp32 = True
|
167 |
self.layer_number = max(1, layer_number)
|
|
|
168 |
|
169 |
projection_size = config.kv_channels * config.num_attention_heads
|
170 |
|
@@ -183,91 +190,198 @@ class CoreAttention(torch.nn.Module):
|
|
183 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
184 |
|
185 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
else:
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
# [b, np, sq, sk]
|
203 |
-
output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
)
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
# attention scores and attention mask [b, np, sq, sk]
|
233 |
-
if self.attention_softmax_in_fp32:
|
234 |
-
attention_scores = attention_scores.float()
|
235 |
-
if self.coeff is not None:
|
236 |
-
attention_scores = attention_scores * self.coeff
|
237 |
-
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
238 |
-
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
239 |
-
device=attention_scores.device, dtype=torch.bool)
|
240 |
-
attention_mask.tril_()
|
241 |
-
attention_mask = ~attention_mask
|
242 |
-
if attention_mask is not None:
|
243 |
-
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
244 |
-
attention_probs = F.softmax(attention_scores, dim=-1)
|
245 |
-
attention_probs = attention_probs.type_as(value_layer)
|
246 |
-
|
247 |
-
# This is actually dropping out entire tokens to attend to, which might
|
248 |
-
# seem a bit unusual, but is taken from the original Transformer paper.
|
249 |
-
attention_probs = self.attention_dropout(attention_probs)
|
250 |
-
|
251 |
-
# query layer shape: [b * np, sq, hn]
|
252 |
-
# value layer shape: [b, np, sk, hn]
|
253 |
-
# attention shape: [b, np, sq, sk]
|
254 |
-
# context layer shape: [b, np, sq, hn]
|
255 |
-
output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
|
256 |
-
# change view [b * np, sk, hn]
|
257 |
-
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
258 |
-
# change view [b * np, sq, sk]
|
259 |
-
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
260 |
-
# matmul: [b * np, sq, hn]
|
261 |
-
context_layer = torch.bmm(attention_probs, value_layer)
|
262 |
-
# change view [b, np, sq, hn]
|
263 |
-
context_layer = context_layer.view(*output_size)
|
264 |
-
# [b, np, sq, hn] --> [b, sq, np, hn]
|
265 |
-
context_layer = context_layer.transpose(1, 2).contiguous()
|
266 |
-
# [b, sq, np, hn] --> [b, sq, hp]
|
267 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
268 |
-
context_layer = context_layer.reshape(*new_context_layer_shape)
|
269 |
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
|
273 |
class SelfAttention(torch.nn.Module):
|
@@ -299,7 +413,7 @@ class SelfAttention(torch.nn.Module):
|
|
299 |
device=device, **_config_to_kwargs(config)
|
300 |
)
|
301 |
|
302 |
-
self.core_attention =
|
303 |
|
304 |
# Output.
|
305 |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
@@ -378,7 +492,8 @@ class SelfAttention(torch.nn.Module):
|
|
378 |
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
379 |
if use_cache:
|
380 |
if kv_cache is None:
|
381 |
-
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
|
|
|
382 |
else:
|
383 |
kv_cache = (key_layer, value_layer)
|
384 |
else:
|
@@ -644,12 +759,18 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
644 |
config_class = ChatGLMConfig
|
645 |
base_model_prefix = "transformer"
|
646 |
_no_split_modules = ["GLMBlock"]
|
|
|
|
|
647 |
|
648 |
def _init_weights(self, module: nn.Module):
|
649 |
"""Initialize the weights."""
|
650 |
return
|
651 |
|
652 |
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
|
|
|
|
|
|
|
|
653 |
batch_size, seq_length = input_ids.shape
|
654 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
655 |
full_attention_mask.tril_()
|
@@ -724,7 +845,8 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
724 |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
725 |
)
|
726 |
|
727 |
-
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
|
|
|
728 |
device=device, dtype=config.torch_dtype)
|
729 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
730 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
@@ -745,6 +867,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
745 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
746 |
inputs_embeds: Optional[torch.Tensor] = None,
|
747 |
use_cache: Optional[bool] = None,
|
|
|
748 |
output_hidden_states: Optional[bool] = None,
|
749 |
return_dict: Optional[bool] = None,
|
750 |
):
|
@@ -1156,6 +1279,7 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1156 |
inputs_embeds: Optional[torch.LongTensor] = None,
|
1157 |
labels: Optional[torch.LongTensor] = None,
|
1158 |
use_cache: Optional[bool] = None,
|
|
|
1159 |
output_hidden_states: Optional[bool] = None,
|
1160 |
return_dict: Optional[bool] = None,
|
1161 |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
|
@@ -1169,6 +1293,7 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1169 |
past_key_values=past_key_values,
|
1170 |
inputs_embeds=inputs_embeds,
|
1171 |
use_cache=use_cache,
|
|
|
1172 |
output_hidden_states=output_hidden_states,
|
1173 |
return_dict=return_dict,
|
1174 |
)
|
|
|
21 |
SequenceClassifierOutputWithPast,
|
22 |
)
|
23 |
from transformers.modeling_utils import PreTrainedModel
|
24 |
+
from transformers.utils import logging, is_torch_npu_available, is_flash_attn_greater_or_equal_2_10, \
|
25 |
+
is_flash_attn_2_available
|
26 |
from transformers.generation.logits_process import LogitsProcessor
|
27 |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
28 |
|
29 |
from .configuration_chatglm import ChatGLMConfig
|
30 |
|
31 |
+
if is_flash_attn_2_available():
|
32 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
33 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
34 |
+
|
35 |
# flags required to enable jit fusion kernels
|
36 |
|
37 |
if sys.platform != 'darwin' and not is_torch_npu_available():
|
|
|
45 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
46 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
47 |
|
48 |
+
|
49 |
def default_init(cls, *args, **kwargs):
|
50 |
return cls(*args, **kwargs)
|
51 |
|
|
|
165 |
class CoreAttention(torch.nn.Module):
|
166 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
167 |
super(CoreAttention, self).__init__()
|
168 |
+
self.config = config
|
169 |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
170 |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
171 |
if self.apply_query_key_layer_scaling:
|
172 |
self.attention_softmax_in_fp32 = True
|
173 |
self.layer_number = max(1, layer_number)
|
174 |
+
self.is_causal = True
|
175 |
|
176 |
projection_size = config.kv_channels * config.num_attention_heads
|
177 |
|
|
|
190 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
191 |
|
192 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
193 |
+
# [b, np, sq, sk]
|
194 |
+
output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
|
195 |
+
|
196 |
+
# [b, np, sq, hn] -> [b * np, sq, hn]
|
197 |
+
query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
|
198 |
+
# [b, np, sk, hn] -> [b * np, sk, hn]
|
199 |
+
key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
|
200 |
+
|
201 |
+
# preallocting input tensor: [b * np, sq, sk]
|
202 |
+
matmul_input_buffer = torch.empty(
|
203 |
+
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
204 |
+
device=query_layer.device
|
205 |
+
)
|
206 |
+
|
207 |
+
# Raw attention scores. [b * np, sq, sk]
|
208 |
+
matmul_result = torch.baddbmm(
|
209 |
+
matmul_input_buffer,
|
210 |
+
query_layer, # [b * np, sq, hn]
|
211 |
+
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
212 |
+
beta=0.0,
|
213 |
+
alpha=(1.0 / self.norm_factor),
|
214 |
+
)
|
215 |
+
|
216 |
+
# change view to [b, np, sq, sk]
|
217 |
+
attention_scores = matmul_result.view(*output_size)
|
218 |
+
|
219 |
+
# ===========================
|
220 |
+
# Attention probs and dropout
|
221 |
+
# ===========================
|
222 |
+
|
223 |
+
# attention scores and attention mask [b, np, sq, sk]
|
224 |
+
if self.attention_softmax_in_fp32:
|
225 |
+
attention_scores = attention_scores.float()
|
226 |
+
if self.coeff is not None:
|
227 |
+
attention_scores = attention_scores * self.coeff
|
228 |
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
229 |
+
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
230 |
+
device=attention_scores.device, dtype=torch.bool)
|
231 |
+
attention_mask.tril_()
|
232 |
+
attention_mask = ~attention_mask
|
233 |
+
if attention_mask is not None:
|
234 |
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
235 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
236 |
+
attention_probs = attention_probs.type_as(value_layer)
|
237 |
+
|
238 |
+
# This is actually dropping out entire tokens to attend to, which might
|
239 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
240 |
+
attention_probs = self.attention_dropout(attention_probs)
|
241 |
+
|
242 |
+
# query layer shape: [b * np, sq, hn]
|
243 |
+
# value layer shape: [b, np, sk, hn]
|
244 |
+
# attention shape: [b, np, sq, sk]
|
245 |
+
# context layer shape: [b, np, sq, hn]
|
246 |
+
output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
|
247 |
+
# change view [b * np, sk, hn]
|
248 |
+
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
249 |
+
# change view [b * np, sq, sk]
|
250 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
251 |
+
# matmul: [b * np, sq, hn]
|
252 |
+
context_layer = torch.bmm(attention_probs, value_layer)
|
253 |
+
# change view [b, np, sq, hn]
|
254 |
+
context_layer = context_layer.view(*output_size)
|
255 |
+
# [b, np, sq, hn] --> [b, sq, np, hn]
|
256 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
257 |
+
# [b, sq, np, hn] --> [b, sq, hp]
|
258 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
259 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
260 |
+
|
261 |
+
return context_layer
|
262 |
+
|
263 |
+
|
264 |
+
class SdpaAttention(CoreAttention):
|
265 |
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
266 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
267 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
268 |
+
is_causal=True,
|
269 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
270 |
else:
|
271 |
+
if attention_mask is not None:
|
272 |
+
attention_mask = ~attention_mask
|
273 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
274 |
+
attention_mask,
|
275 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
276 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
277 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
278 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
279 |
+
return context_layer
|
280 |
+
|
281 |
+
|
282 |
+
def _get_unpad_data(attention_mask):
|
283 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
284 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
285 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
286 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
287 |
+
return (
|
288 |
+
indices,
|
289 |
+
cu_seqlens,
|
290 |
+
max_seqlen_in_batch,
|
291 |
+
)
|
292 |
|
|
|
|
|
293 |
|
294 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
|
295 |
+
class FlashAttention2(CoreAttention):
|
296 |
+
def __init__(self, *args, **kwargs):
|
297 |
+
super().__init__(*args, **kwargs)
|
298 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
299 |
|
300 |
+
def forward(self, query_states, key_states, value_states, attention_mask):
|
301 |
+
query_states = query_states.transpose(1, 2)
|
302 |
+
key_states = key_states.transpose(1, 2)
|
303 |
+
value_states = value_states.transpose(1, 2)
|
304 |
+
batch_size, query_length = query_states.shape[:2]
|
305 |
+
if not self._flash_attn_uses_top_left_mask:
|
306 |
+
causal = self.is_causal
|
307 |
+
else:
|
308 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
309 |
+
causal = self.is_causal and query_length != 1
|
310 |
+
dropout = self.config.attention_dropout if self.training else 0.0
|
311 |
+
# Contains at least one padding token in the sequence
|
312 |
+
if attention_mask is not None:
|
313 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
314 |
+
query_states, key_states, value_states, attention_mask, query_length
|
315 |
)
|
316 |
|
317 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
318 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
319 |
+
|
320 |
+
attn_output_unpad = flash_attn_varlen_func(
|
321 |
+
query_states,
|
322 |
+
key_states,
|
323 |
+
value_states,
|
324 |
+
cu_seqlens_q=cu_seqlens_q,
|
325 |
+
cu_seqlens_k=cu_seqlens_k,
|
326 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
327 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
328 |
+
dropout_p=dropout,
|
329 |
+
softmax_scale=None,
|
330 |
+
causal=causal,
|
331 |
)
|
332 |
|
333 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
334 |
+
else:
|
335 |
+
attn_output = flash_attn_func(
|
336 |
+
query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
|
337 |
+
)
|
338 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
|
339 |
+
return attn_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
342 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
343 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
344 |
+
|
345 |
+
key_layer = index_first_axis(
|
346 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
347 |
+
)
|
348 |
+
value_layer = index_first_axis(
|
349 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
350 |
+
)
|
351 |
+
if query_length == kv_seq_len:
|
352 |
+
query_layer = index_first_axis(
|
353 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim), indices_k
|
354 |
+
)
|
355 |
+
cu_seqlens_q = cu_seqlens_k
|
356 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
357 |
+
indices_q = indices_k
|
358 |
+
elif query_length == 1:
|
359 |
+
max_seqlen_in_batch_q = 1
|
360 |
+
cu_seqlens_q = torch.arange(
|
361 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
362 |
+
) # There is a memcpy here, that is very bad.
|
363 |
+
indices_q = cu_seqlens_q[:-1]
|
364 |
+
query_layer = query_layer.squeeze(1)
|
365 |
+
else:
|
366 |
+
# The -q_len: slice assumes left padding.
|
367 |
+
attention_mask = attention_mask[:, -query_length:]
|
368 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
369 |
+
|
370 |
+
return (
|
371 |
+
query_layer,
|
372 |
+
key_layer,
|
373 |
+
value_layer,
|
374 |
+
indices_q,
|
375 |
+
(cu_seqlens_q, cu_seqlens_k),
|
376 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
377 |
+
)
|
378 |
+
|
379 |
+
|
380 |
+
CORE_ATTENTION_CLASSES = {
|
381 |
+
"eager": CoreAttention,
|
382 |
+
"sdpa": SdpaAttention,
|
383 |
+
"flash_attention_2": FlashAttention2
|
384 |
+
}
|
385 |
|
386 |
|
387 |
class SelfAttention(torch.nn.Module):
|
|
|
413 |
device=device, **_config_to_kwargs(config)
|
414 |
)
|
415 |
|
416 |
+
self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)
|
417 |
|
418 |
# Output.
|
419 |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
|
|
492 |
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
493 |
if use_cache:
|
494 |
if kv_cache is None:
|
495 |
+
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
|
496 |
+
dim=1)
|
497 |
else:
|
498 |
kv_cache = (key_layer, value_layer)
|
499 |
else:
|
|
|
759 |
config_class = ChatGLMConfig
|
760 |
base_model_prefix = "transformer"
|
761 |
_no_split_modules = ["GLMBlock"]
|
762 |
+
_supports_flash_attn_2 = True
|
763 |
+
_supports_sdpa = True
|
764 |
|
765 |
def _init_weights(self, module: nn.Module):
|
766 |
"""Initialize the weights."""
|
767 |
return
|
768 |
|
769 |
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
770 |
+
if self.config._attn_implementation == "flash_attention_2":
|
771 |
+
if padding_mask is not None and not padding_mask.all():
|
772 |
+
return padding_mask
|
773 |
+
return None
|
774 |
batch_size, seq_length = input_ids.shape
|
775 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
776 |
full_attention_mask.tril_()
|
|
|
845 |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
846 |
)
|
847 |
|
848 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
|
849 |
+
original_impl=config.original_rope,
|
850 |
device=device, dtype=config.torch_dtype)
|
851 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
852 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
|
|
867 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
868 |
inputs_embeds: Optional[torch.Tensor] = None,
|
869 |
use_cache: Optional[bool] = None,
|
870 |
+
output_attentions: Optional[bool] = None,
|
871 |
output_hidden_states: Optional[bool] = None,
|
872 |
return_dict: Optional[bool] = None,
|
873 |
):
|
|
|
1279 |
inputs_embeds: Optional[torch.LongTensor] = None,
|
1280 |
labels: Optional[torch.LongTensor] = None,
|
1281 |
use_cache: Optional[bool] = None,
|
1282 |
+
output_attentions: Optional[bool] = None,
|
1283 |
output_hidden_states: Optional[bool] = None,
|
1284 |
return_dict: Optional[bool] = None,
|
1285 |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
|
|
|
1293 |
past_key_values=past_key_values,
|
1294 |
inputs_embeds=inputs_embeds,
|
1295 |
use_cache=use_cache,
|
1296 |
+
output_attentions=output_attentions,
|
1297 |
output_hidden_states=output_hidden_states,
|
1298 |
return_dict=return_dict,
|
1299 |
)
|