zR
commited on
Commit
·
d907213
1
Parent(s):
6c2e473
finetune
Browse files- modeling_chatglm.py +41 -137
modeling_chatglm.py
CHANGED
@@ -3,7 +3,6 @@ import json
|
|
3 |
import math
|
4 |
import copy
|
5 |
import warnings
|
6 |
-
import re
|
7 |
import sys
|
8 |
|
9 |
import torch
|
@@ -30,6 +29,7 @@ from .configuration_chatglm import ChatGLMConfig
|
|
30 |
|
31 |
try:
|
32 |
from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
|
|
|
33 |
if is_flash_attn_2_available():
|
34 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
35 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
@@ -215,6 +215,7 @@ class RMSNorm(torch.nn.Module):
|
|
215 |
return (self.weight * hidden_states).to(input_dtype)
|
216 |
|
217 |
|
|
|
218 |
class CoreAttention(torch.nn.Module):
|
219 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
220 |
super(CoreAttention, self).__init__()
|
@@ -332,130 +333,6 @@ class CoreAttention(torch.nn.Module):
|
|
332 |
return context_layer
|
333 |
|
334 |
|
335 |
-
class SdpaAttention(CoreAttention):
|
336 |
-
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
337 |
-
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
338 |
-
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
339 |
-
is_causal=True,
|
340 |
-
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
341 |
-
else:
|
342 |
-
if attention_mask is not None:
|
343 |
-
attention_mask = ~attention_mask
|
344 |
-
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
345 |
-
attention_mask,
|
346 |
-
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
347 |
-
context_layer = context_layer.transpose(1, 2).contiguous()
|
348 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
349 |
-
context_layer = context_layer.reshape(*new_context_layer_shape)
|
350 |
-
return context_layer
|
351 |
-
|
352 |
-
|
353 |
-
def _get_unpad_data(attention_mask):
|
354 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
355 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
356 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
357 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
358 |
-
return (
|
359 |
-
indices,
|
360 |
-
cu_seqlens,
|
361 |
-
max_seqlen_in_batch,
|
362 |
-
)
|
363 |
-
|
364 |
-
|
365 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
|
366 |
-
class FlashAttention2(CoreAttention):
|
367 |
-
def __init__(self, *args, **kwargs):
|
368 |
-
super().__init__(*args, **kwargs)
|
369 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
370 |
-
|
371 |
-
def forward(self, query_states, key_states, value_states, attention_mask):
|
372 |
-
query_states = query_states.transpose(1, 2)
|
373 |
-
key_states = key_states.transpose(1, 2)
|
374 |
-
value_states = value_states.transpose(1, 2)
|
375 |
-
batch_size, query_length = query_states.shape[:2]
|
376 |
-
if not self._flash_attn_uses_top_left_mask:
|
377 |
-
causal = self.is_causal
|
378 |
-
else:
|
379 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
380 |
-
causal = self.is_causal and query_length != 1
|
381 |
-
dropout = self.config.attention_dropout if self.training else 0.0
|
382 |
-
# Contains at least one padding token in the sequence
|
383 |
-
if attention_mask is not None:
|
384 |
-
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
385 |
-
query_states, key_states, value_states, attention_mask, query_length
|
386 |
-
)
|
387 |
-
|
388 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
389 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
390 |
-
|
391 |
-
attn_output_unpad = flash_attn_varlen_func(
|
392 |
-
query_states,
|
393 |
-
key_states,
|
394 |
-
value_states,
|
395 |
-
cu_seqlens_q=cu_seqlens_q,
|
396 |
-
cu_seqlens_k=cu_seqlens_k,
|
397 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
398 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
399 |
-
dropout_p=dropout,
|
400 |
-
softmax_scale=None,
|
401 |
-
causal=causal,
|
402 |
-
)
|
403 |
-
|
404 |
-
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
405 |
-
else:
|
406 |
-
attn_output = flash_attn_func(
|
407 |
-
query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
|
408 |
-
)
|
409 |
-
attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
|
410 |
-
return attn_output
|
411 |
-
|
412 |
-
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
413 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
414 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
415 |
-
|
416 |
-
key_layer = index_first_axis(
|
417 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
418 |
-
)
|
419 |
-
value_layer = index_first_axis(
|
420 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
421 |
-
)
|
422 |
-
if query_length == kv_seq_len:
|
423 |
-
query_layer = index_first_axis(
|
424 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim),
|
425 |
-
indices_k
|
426 |
-
)
|
427 |
-
cu_seqlens_q = cu_seqlens_k
|
428 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
429 |
-
indices_q = indices_k
|
430 |
-
elif query_length == 1:
|
431 |
-
max_seqlen_in_batch_q = 1
|
432 |
-
cu_seqlens_q = torch.arange(
|
433 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
434 |
-
) # There is a memcpy here, that is very bad.
|
435 |
-
indices_q = cu_seqlens_q[:-1]
|
436 |
-
query_layer = query_layer.squeeze(1)
|
437 |
-
else:
|
438 |
-
# The -q_len: slice assumes left padding.
|
439 |
-
attention_mask = attention_mask[:, -query_length:]
|
440 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
441 |
-
|
442 |
-
return (
|
443 |
-
query_layer,
|
444 |
-
key_layer,
|
445 |
-
value_layer,
|
446 |
-
indices_q,
|
447 |
-
(cu_seqlens_q, cu_seqlens_k),
|
448 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
449 |
-
)
|
450 |
-
|
451 |
-
|
452 |
-
CORE_ATTENTION_CLASSES = {
|
453 |
-
"eager": CoreAttention,
|
454 |
-
"sdpa": SdpaAttention,
|
455 |
-
"flash_attention_2": FlashAttention2
|
456 |
-
}
|
457 |
-
|
458 |
-
|
459 |
class SelfAttention(torch.nn.Module):
|
460 |
"""Parallel self-attention layer abstract class.
|
461 |
|
@@ -820,18 +697,12 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
820 |
config_class = ChatGLMConfig
|
821 |
base_model_prefix = "transformer"
|
822 |
_no_split_modules = ["GLMBlock"]
|
823 |
-
_supports_flash_attn_2 = True
|
824 |
-
_supports_sdpa = True
|
825 |
|
826 |
def _init_weights(self, module: nn.Module):
|
827 |
"""Initialize the weights."""
|
828 |
return
|
829 |
|
830 |
def get_masks(self, input_embeds, past_key_values, padding_mask=None):
|
831 |
-
if self.config._attn_implementation == "flash_attention_2":
|
832 |
-
if padding_mask is not None and not padding_mask.all():
|
833 |
-
return padding_mask
|
834 |
-
return None
|
835 |
batch_size, seq_length, embed_size = input_embeds.shape
|
836 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_embeds.device)
|
837 |
full_attention_mask.tril_()
|
@@ -978,7 +849,6 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
978 |
# not allow for inputs_embeds, because we want to process image feature
|
979 |
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
|
980 |
if not is_empty(images): # multi-modality
|
981 |
-
|
982 |
image_size: int = self.config.vision_config['image_size']
|
983 |
patch_size: int = self.config.vision_config['patch_size']
|
984 |
num_patches = (image_size // patch_size // 2) ** 2
|
@@ -998,8 +868,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
998 |
self.config.eoi_token_id)
|
999 |
assert eoi_token_pos - boi_token_pos == 2
|
1000 |
new_input_embeds.append(torch.cat(
|
1001 |
-
(inputs_embeds[i, :boi_token_pos], images_features[i]
|
1002 |
-
inputs_embeds[i, eoi_token_pos + 1:])))
|
1003 |
new_position_ids.append(torch.cat(
|
1004 |
(position_ids[i, :boi_token_pos + 1], position_ids[i, boi_token_pos + 1].repeat(num_patches),
|
1005 |
position_ids[i, eoi_token_pos:])
|
@@ -1015,9 +884,6 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
1015 |
|
1016 |
batch_size, seq_length = input_ids.shape
|
1017 |
|
1018 |
-
if inputs_embeds is None:
|
1019 |
-
inputs_embeds = self.embedding(input_ids)
|
1020 |
-
|
1021 |
if self.pre_seq_len is not None:
|
1022 |
if past_key_values is None:
|
1023 |
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
|
@@ -1028,10 +894,32 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
1028 |
|
1029 |
if full_attention_mask is None:
|
1030 |
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1031 |
full_attention_mask = self.get_masks(inputs_embeds, past_key_values, padding_mask=attention_mask)
|
1032 |
|
1033 |
# Rotary positional embeddings
|
1034 |
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
|
|
1035 |
if position_ids is not None:
|
1036 |
rotary_pos_emb = rotary_pos_emb[position_ids]
|
1037 |
else:
|
@@ -1189,6 +1077,22 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1189 |
|
1190 |
loss = None
|
1191 |
if labels is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1192 |
lm_logits = lm_logits.to(torch.float32)
|
1193 |
|
1194 |
# Shift so that tokens < n predict n
|
|
|
3 |
import math
|
4 |
import copy
|
5 |
import warnings
|
|
|
6 |
import sys
|
7 |
|
8 |
import torch
|
|
|
29 |
|
30 |
try:
|
31 |
from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
|
32 |
+
|
33 |
if is_flash_attn_2_available():
|
34 |
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
35 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
|
215 |
return (self.weight * hidden_states).to(input_dtype)
|
216 |
|
217 |
|
218 |
+
|
219 |
class CoreAttention(torch.nn.Module):
|
220 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
221 |
super(CoreAttention, self).__init__()
|
|
|
333 |
return context_layer
|
334 |
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
class SelfAttention(torch.nn.Module):
|
337 |
"""Parallel self-attention layer abstract class.
|
338 |
|
|
|
697 |
config_class = ChatGLMConfig
|
698 |
base_model_prefix = "transformer"
|
699 |
_no_split_modules = ["GLMBlock"]
|
|
|
|
|
700 |
|
701 |
def _init_weights(self, module: nn.Module):
|
702 |
"""Initialize the weights."""
|
703 |
return
|
704 |
|
705 |
def get_masks(self, input_embeds, past_key_values, padding_mask=None):
|
|
|
|
|
|
|
|
|
706 |
batch_size, seq_length, embed_size = input_embeds.shape
|
707 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_embeds.device)
|
708 |
full_attention_mask.tril_()
|
|
|
849 |
# not allow for inputs_embeds, because we want to process image feature
|
850 |
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}"
|
851 |
if not is_empty(images): # multi-modality
|
|
|
852 |
image_size: int = self.config.vision_config['image_size']
|
853 |
patch_size: int = self.config.vision_config['patch_size']
|
854 |
num_patches = (image_size // patch_size // 2) ** 2
|
|
|
868 |
self.config.eoi_token_id)
|
869 |
assert eoi_token_pos - boi_token_pos == 2
|
870 |
new_input_embeds.append(torch.cat(
|
871 |
+
(inputs_embeds[i, :boi_token_pos], images_features[i], inputs_embeds[i, eoi_token_pos + 1:])))
|
|
|
872 |
new_position_ids.append(torch.cat(
|
873 |
(position_ids[i, :boi_token_pos + 1], position_ids[i, boi_token_pos + 1].repeat(num_patches),
|
874 |
position_ids[i, eoi_token_pos:])
|
|
|
884 |
|
885 |
batch_size, seq_length = input_ids.shape
|
886 |
|
|
|
|
|
|
|
887 |
if self.pre_seq_len is not None:
|
888 |
if past_key_values is None:
|
889 |
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
|
|
|
894 |
|
895 |
if full_attention_mask is None:
|
896 |
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
897 |
+
if self.training:
|
898 |
+
# https://github.com/THUDM/GLM-4/issues/264
|
899 |
+
new_input_ids, new_attention_mask = [], []
|
900 |
+
for i in range(len(input_ids)):
|
901 |
+
input_id = input_ids[i].tolist()
|
902 |
+
boi_token_pos, eoi_token_pos = input_id.index(self.config.boi_token_id), input_id.index(self.config.eoi_token_id)
|
903 |
+
assert eoi_token_pos - boi_token_pos == 2
|
904 |
+
|
905 |
+
new_attention_mask.append(torch.cat(
|
906 |
+
(attention_mask[i, :boi_token_pos + 1], torch.ones(num_patches).to(attention_mask.device),
|
907 |
+
attention_mask[i, eoi_token_pos:])))
|
908 |
+
|
909 |
+
new_input_ids.append(torch.cat(
|
910 |
+
(input_ids[i, :boi_token_pos + 1], input_ids[i, -1].repeat(num_patches),
|
911 |
+
input_ids[i, eoi_token_pos:])))
|
912 |
+
|
913 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
914 |
+
input_ids = torch.stack(new_input_ids, dim=0)
|
915 |
+
|
916 |
+
if inputs_embeds is None:
|
917 |
+
inputs_embeds = self.embedding(input_ids)
|
918 |
full_attention_mask = self.get_masks(inputs_embeds, past_key_values, padding_mask=attention_mask)
|
919 |
|
920 |
# Rotary positional embeddings
|
921 |
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
922 |
+
|
923 |
if position_ids is not None:
|
924 |
rotary_pos_emb = rotary_pos_emb[position_ids]
|
925 |
else:
|
|
|
1077 |
|
1078 |
loss = None
|
1079 |
if labels is not None:
|
1080 |
+
# https://github.com/THUDM/GLM-4/issues/264
|
1081 |
+
new_labels = []
|
1082 |
+
for i in range(len(input_ids)):
|
1083 |
+
input_id = input_ids[i].tolist()
|
1084 |
+
boi_token_pos, eoi_token_pos = input_id.index(self.config.boi_token_id), input_id.index(
|
1085 |
+
self.config.eoi_token_id)
|
1086 |
+
assert eoi_token_pos - boi_token_pos == 2
|
1087 |
+
|
1088 |
+
new_labels.append(torch.cat(
|
1089 |
+
(
|
1090 |
+
labels[i, :boi_token_pos + 1],
|
1091 |
+
torch.tensor([-100]).to(labels.device).to(labels.dtype).repeat(1600),
|
1092 |
+
labels[i, eoi_token_pos:]))) # 在两个token之间加入
|
1093 |
+
|
1094 |
+
labels = torch.stack(new_labels, dim=0)
|
1095 |
+
|
1096 |
lm_logits = lm_logits.to(torch.float32)
|
1097 |
|
1098 |
# Shift so that tokens < n predict n
|