Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- THUdyh/Oryx-SFT-Data
|
5 |
+
base_model:
|
6 |
+
- Qwen/Qwen2.5-7B-Instruct
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
- zh
|
11 |
+
---
|
12 |
+
# Oryx-7B
|
13 |
+
|
14 |
+
## Model Summary
|
15 |
+
|
16 |
+
The Oryx models are 7/34B parameter models trained on [Oryx-SFT-Data](https://huggingface.co/datasets/THUdyh/Oryx-SFT-Data), based on Qwen2.5 language model with a context window of 32K tokens.
|
17 |
+
|
18 |
+
Oryx offers an on-demand solution to seamlessly and efficiently process visual inputs with arbitrary spatial sizes and temporal lengths.
|
19 |
+
|
20 |
+
- **Repository:** https://github.com/Oryx-mllm/Oryx
|
21 |
+
- **Languages:** English, Chinese
|
22 |
+
- **Paper:** https://arxiv.org/abs/2409.12961
|
23 |
+
|
24 |
+
## Use
|
25 |
+
|
26 |
+
We provide a simple generation process for using our model. For more details, please refer to our [Github Repo](https://github.com/liuzuyan/oryx)
|
27 |
+
|
28 |
+
```
|
29 |
+
from oryx.model.builder import load_pretrained_model
|
30 |
+
from oryx.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
|
31 |
+
from oryx.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
|
32 |
+
from oryx.conversation import conv_templates, SeparatorStyle
|
33 |
+
from PIL import Image
|
34 |
+
import requests
|
35 |
+
import copy
|
36 |
+
import torch
|
37 |
+
import sys
|
38 |
+
import warnings
|
39 |
+
from decord import VideoReader, cpu
|
40 |
+
import numpy as np
|
41 |
+
|
42 |
+
def load_video(self, video_path, max_frames_num,fps=1,force_sample=False):
|
43 |
+
if max_frames_num == 0:
|
44 |
+
return np.zeros((1, 336, 336, 3))
|
45 |
+
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
|
46 |
+
total_frame_num = len(vr)
|
47 |
+
video_time = total_frame_num / vr.get_avg_fps()
|
48 |
+
fps = round(vr.get_avg_fps()/fps)
|
49 |
+
frame_idx = [i for i in range(0, len(vr), fps)]
|
50 |
+
frame_time = [i/fps for i in frame_idx]
|
51 |
+
if len(frame_idx) > max_frames_num or force_sample:
|
52 |
+
sample_fps = max_frames_num
|
53 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
|
54 |
+
frame_idx = uniform_sampled_frames.tolist()
|
55 |
+
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
|
56 |
+
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
|
57 |
+
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
58 |
+
# import pdb;pdb.set_trace()
|
59 |
+
return spare_frames,frame_time,video_time
|
60 |
+
pretrained = "THUdyh/Oryx-7B"
|
61 |
+
model_name = "oryx_qwen"
|
62 |
+
device = "cuda"
|
63 |
+
device_map = "auto"
|
64 |
+
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map)
|
65 |
+
model.eval()
|
66 |
+
video_path = ""
|
67 |
+
max_frames_num = "64"
|
68 |
+
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
|
69 |
+
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16()
|
70 |
+
video = [video]
|
71 |
+
video_data = (video, video)
|
72 |
+
input_data = (video_data, (384, 384), "video")
|
73 |
+
conv_template = "qwen_1_5"
|
74 |
+
question = DEFAULT_IMAGE_TOKEN + "\nPlease describe this video in detail."
|
75 |
+
conv = copy.deepcopy(conv_templates[conv_template])
|
76 |
+
conv.append_message(conv.roles[0], question)
|
77 |
+
conv.append_message(conv.roles[1], None)
|
78 |
+
prompt_question = conv.get_prompt()
|
79 |
+
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
|
80 |
+
output_ids = model.generate(
|
81 |
+
inputs=input_ids,
|
82 |
+
images=input_data[0][0],
|
83 |
+
images_highres=input_data[0][1],
|
84 |
+
modalities=video_data[2],
|
85 |
+
do_sample=False,
|
86 |
+
temperature=0,
|
87 |
+
max_new_tokens=128,
|
88 |
+
use_cache=True,
|
89 |
+
)
|
90 |
+
|
91 |
+
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
|
92 |
+
print(text_outputs)
|
93 |
+
```
|
94 |
+
|
95 |
+
|
96 |
+
### Results
|
97 |
+
|
98 |
+
#### General Video Benchmark
|
99 |
+
|
100 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/652965773a416e1f2173443b/hKfOK0u3OXly_u4hgGLDB.png" alt="image/png" style="zoom: 33%;" />
|
101 |
+
|
102 |
+
#### Long-Form Video Understanding
|
103 |
+
|
104 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/652965773a416e1f2173443b/Xweq9f4OWkqeVc_FZIMuO.png" alt="image/png" style="zoom:33%;" />
|
105 |
+
|
106 |
+
#### Common Image Benchmark
|
107 |
+
|
108 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/652965773a416e1f2173443b/ybfroSA9WaKXtJbP_9cLR.png" alt="image/png" style="zoom:33%;" />
|
109 |
+
|
110 |
+
#### 3D Spatial Understanding
|
111 |
+
|
112 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/652965773a416e1f2173443b/5v8ACRzAoKS0FbcVBXZhT.png" alt="image/png" style="zoom:33%;" />
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
### Model Architecture
|
117 |
+
|
118 |
+
- **Architecture:** Pre-trained [Oryx-ViT](https://huggingface.co/THUdyh/Oryx-ViT) + Qwen2.5-7B
|
119 |
+
- **Data:** a mixture of 1.2M image/video data
|
120 |
+
- **Precision:** BFloat16
|
121 |
+
|
122 |
+
#### Hardware & Software
|
123 |
+
|
124 |
+
- **Hardware:** 64 * NVIDIA Tesla A100
|
125 |
+
- **Orchestration:** HuggingFace Trainer
|
126 |
+
- **Code:** Pytorch
|
127 |
+
|
128 |
+
## Citation
|