DongfuJiang commited on
Commit
2010bf4
·
verified ·
1 Parent(s): 0195f9d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - TIGER-Lab/AceCode-89K
5
+ language:
6
+ - en
7
+ base_model:
8
+ - Qwen/Qwen2.5-Coder-7B
9
+ tags:
10
+ - acecoder
11
+ - code
12
+ - Qwen
13
+ ---
14
+
15
+
16
+ # 🂡 AceCode-89K
17
+
18
+ [Paper](#) |
19
+ [Github](https://github.com/TIGER-AI-Lab/AceCoder) |
20
+ [AceCode-89K](https://huggingface.co/datasets/TIGER-Lab/AceCode-89K) |
21
+ [AceCodePair-300K](https://huggingface.co/datasets/TIGER-Lab/AceCodePair-300K) |
22
+ [RM/RL Models](https://huggingface.co/collections/TIGER-Lab/acecoder-67a16011a6c7d65cad529eba)
23
+
24
+
25
+ We introduce AceCoder, the first work to propose a fully automated pipeline for synthesizing large-scale reliable tests used for the reward model training and reinforcement learning in the coding scenario. To do this, we curated the dataset AceCode-89K, where we start from a seed code dataset and prompt powerful LLMs to "imagine" proper test cases for the coding question and filter the noisy ones. We sample inferences from existing coder models and compute their pass rate as the reliable and verifiable rewards for both training the reward model and conducting the reinforcement learning for coder LLM.
26
+
27
+ ![https://tiger-ai-lab.github.io/AceCoder/static/images/ac_overview.png](https://tiger-ai-lab.github.io/AceCoder/static/images/ac_overview.png)
28
+
29
+
30
+ ## Note
31
+ - **This model is trained on the hard version of [TIGER-Lab/AceCode-89K](https://huggingface.co/datasets/TIGER-Lab/AceCode-89K) with about 22k examples, using the binary pass rate (rule based reward) as the reward**
32
+ <!-- - **This model official is trained on the hard version of [TIGER-Lab/AceCode-89K](https://huggingface.co/datasets/TIGER-Lab/AceCode-89K) with about 22k examples, using the [TIGER-Lab/AceCodeRM-7B](https://huggingface.co/TIGER-Lab/AceCodeRM-7B) as the reward** -->
33
+ - This model is trained directly from the base model, similar to the DeepSeek-Zero's style.
34
+ - You can reproduce the hard version of [TIGER-Lab/AceCode-89K](https://huggingface.co/datasets/TIGER-Lab/AceCode-89K) using [script in our Github](#)
35
+ - The training takes 6 hours to finish on 8 x H100 GPUs in around 80 optimization steps.
36
+ - To reproduce the training, please refer to our [training script in the Github](#)
37
+ - To use the model, please refer to the codes in [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)
38
+ - Training [wandb link](https://wandb.ai/dongfu/openrlhf_train_ppo/runs/6sh1uv69?nw=nwuserdongfu)
39
+
40
+ ## Usage
41
+ ```python
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
+
44
+ model_name = "TIGER-Lab/AceCoder-Qwen2.5-Coder-7B-Base-Rule"
45
+
46
+ model = AutoModelForCausalLM.from_pretrained(
47
+ model_name,
48
+ torch_dtype="auto",
49
+ device_map="auto"
50
+ )
51
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
52
+
53
+ prompt = "Give me a short introduction to large language model."
54
+ messages = [
55
+ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
56
+ {"role": "user", "content": prompt}
57
+ ]
58
+ text = tokenizer.apply_chat_template(
59
+ messages,
60
+ tokenize=False,
61
+ add_generation_prompt=True
62
+ )
63
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
64
+
65
+ generated_ids = model.generate(
66
+ **model_inputs,
67
+ max_new_tokens=512
68
+ )
69
+ generated_ids = [
70
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
71
+ ]
72
+
73
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
74
+ ```
75
+
76
+ ## Performance
77
+
78
+ ![https://tiger-ai-lab.github.io/AceCoder/static/images/ac_table3.png](https://tiger-ai-lab.github.io/AceCoder/static/images/ac_table3.png)
79
+
80
+ ## Citation
81
+ ```bibtex
82
+ @article{AceCoder,
83
+ title={AceCoder: Acing Coder RL via Automated Test-Case Synthesis},
84
+ author={Zeng, Huaye and Jiang, Dongfu and Wang, Haozhe and Nie, Ping and Chen, Xiaotong and Chen, Wenhu},
85
+ journal={ArXiv},
86
+ year={2025},
87
+ volume={abs/2207.01780}
88
+ }
89
+ ```