TKKKMMM commited on
Commit
e731850
·
verified ·
1 Parent(s): bd752e9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -7
README.md CHANGED
@@ -27,20 +27,24 @@ This llama model was trained 2x faster with [Unsloth](https://github.com/unsloth
27
  '''
28
  python
29
  ## 必要パッケージのインストール
 
30
  %%capture
31
  !pip install unsloth
32
  !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
33
  !pip install -U torch
34
  !pip install -U peft
35
-
36
-
 
37
  from unsloth import FastLanguageModel
38
  from peft import PeftModel
39
  import torch
40
  import json
41
  from tqdm import tqdm
42
  import re
43
-
 
 
44
  model_id = "llm-jp/llm-jp-3-13b"
45
  adapter_id = "TKKKMMM/llm-jp-3-13b-it_lora"
46
 
@@ -49,16 +53,19 @@ HF_TOKEN = "YOURE TOKEN"
49
  dtype = None
50
  load_in_4bit = True
51
 
52
- ## モデル、トークナイザーの読み込み
53
  model, tokenizer = FastLanguageModel.from_pretrained(
54
  model_name=model_id,
55
  dtype=dtype,
56
  load_in_4bit=load_in_4bit,
57
  trust_remote_code=True,
58
  )
 
59
  ## 元のモデルにLoRAのアダプタを統合。
 
60
  model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
 
61
  ## データセット読み込み
 
62
  datasets = []
63
  with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
64
  item = ""
@@ -68,8 +75,9 @@ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
68
  if item.endswith("}"):
69
  datasets.append(json.loads(item))
70
  item = ""
71
-
72
  ## 回答の生成と格納
 
73
  FastLanguageModel.for_inference(model)
74
 
75
  results = []
@@ -86,13 +94,14 @@ for dt in tqdm(datasets):
86
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
87
 
88
  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
89
-
90
  ## jsonファイルへのエクスポート
 
91
  json_file_id = re.sub(".*/", "", adapter_id)
92
  with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
93
  for result in results:
94
  json.dump(result, f, ensure_ascii=False)
95
  f.write('\n')
96
- '''
97
 
98
 
 
27
  '''
28
  python
29
  ## 必要パッケージのインストール
30
+ ```
31
  %%capture
32
  !pip install unsloth
33
  !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
34
  !pip install -U torch
35
  !pip install -U peft
36
+ ```
37
+ ## ライブラリの読み込み
38
+ ```
39
  from unsloth import FastLanguageModel
40
  from peft import PeftModel
41
  import torch
42
  import json
43
  from tqdm import tqdm
44
  import re
45
+ ```
46
+ ## モデル、トークナイザーの読み込み
47
+ ```
48
  model_id = "llm-jp/llm-jp-3-13b"
49
  adapter_id = "TKKKMMM/llm-jp-3-13b-it_lora"
50
 
 
53
  dtype = None
54
  load_in_4bit = True
55
 
 
56
  model, tokenizer = FastLanguageModel.from_pretrained(
57
  model_name=model_id,
58
  dtype=dtype,
59
  load_in_4bit=load_in_4bit,
60
  trust_remote_code=True,
61
  )
62
+ ```
63
  ## 元のモデルにLoRAのアダプタを統合。
64
+ ```
65
  model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
66
+ ```
67
  ## データセット読み込み
68
+ ```
69
  datasets = []
70
  with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
71
  item = ""
 
75
  if item.endswith("}"):
76
  datasets.append(json.loads(item))
77
  item = ""
78
+ ```
79
  ## 回答の生成と格納
80
+ ```
81
  FastLanguageModel.for_inference(model)
82
 
83
  results = []
 
94
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
95
 
96
  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
97
+ ```
98
  ## jsonファイルへのエクスポート
99
+ ```
100
  json_file_id = re.sub(".*/", "", adapter_id)
101
  with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
102
  for result in results:
103
  json.dump(result, f, ensure_ascii=False)
104
  f.write('\n')
105
+ ```
106
 
107