{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79f6a4430c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728005450148035194, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHN/kj1aD18+skp0vBFaOL5bxmY8pxkRPQAAAAAAAAAAM4IQPbacVz/lPdy86UOovoMAwbxffpE8AAAAAAAAAABmrvW7rV+7Ptr8bz2MNUq+SQqrPS1YFb0AAAAAAAAAADOEpT0rzo8/ior8PeKi8L6fugk+OgnjPQAAAAAAAAAAAOIwPY/CNbrWazg5YlIPNGY9GLsIZVq4AACAPwAAgD8A4Ao94zgcP78BgrwViaO+1NP3PJ16J70AAAAAAAAAAM0c+rv2qHi6RqgeuOuMt7ICGje7bhg4NwAAgD8AAIA/TWl+PR7Z+D1K8Aq+GhVavjJgyLyfN7w8AAAAAAAAAADNdZQ8M1aoP940yj23mLa+qXHjO3zERboAAAAAAAAAAKo4oz6ONVw/BAiMvA6Evb63pF4+2zUvvQAAAAAAAAAAzeQKO2wgyLtOcg69r6PpvWvnGD02VcQ+AACAPwAAgD8zRWI8kRE7Pk0O5zjl3WO+bm+QvZdSCj0AAAAAAAAAAICDgr2U1Lu87f/aPCR/b72mbws+X1uuPgAAgD8AAIA/s71zvacDcT5NQvc9SiB/vsBX3D0yjjC9AAAAAAAAAAA66F8+34QTP6AbTr6a1pK+WYfROYUJ9L0AAAAAAAAAAM1n9TwpIWi8kqkBvLl7Fz0O0OC9MoDtPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHnhESdvsKMAWyUTR4DjAF0lEdAnuMePBBRh3V9lChoBkdAT6RPwd8zAWgHS85oCEdAnuPc2zfJm3V9lChoBkdAcKjW8RL9M2gHTQsCaAhHQJ7k5GNJe3R1fZQoaAZHQHGV+ZG8VYZoB017A2gIR0Ce5ldbxEv1dX2UKGgGR0Bwah2ki2UjaAdNvgFoCEdAnuahKQJXyXV9lChoBkdAaN6bvw3HaWgHTegDaAhHQJ7pCxZ+x4Z1fZQoaAZHQHBRMf3evZBoB01lAmgIR0Ce/uogFHJ+dX2UKGgGR0BvokwnH/96aAdNLQFoCEdAnv8ZmmLtNXV9lChoBkdAcBh+Lm6oVGgHTQ0DaAhHQJ8Aksxwhnt1fZQoaAZHQHKLMPrfLs9oB00tAWgIR0CfAkMNtqHodX2UKGgGR0BtggkLQXyiaAdNTwFoCEdAnwTX3YcvNHV9lChoBkdATLoWFev6j2gHS81oCEdAnwT158jRlnV9lChoBkdAcjmTER8MNWgHTQwCaAhHQJ8G0ctGus91fZQoaAZHQHDrf4ZdfLNoB03LAmgIR0CfBt/axoqTdX2UKGgGR0ByyQxgy/KyaAdNIgFoCEdAnwb7bL2YfHV9lChoBkdAcO8Oo5xR22gHTXYCaAhHQJ8IhGx2SuB1fZQoaAZHQHEgtbor4FloB01tAWgIR0CfCSAn2IwedX2UKGgGR0Az2XmNipeeaAdL0mgIR0CfCTC3PRiPdX2UKGgGRz//kOd5IH1OaAdL1GgIR0CfCXDJ2dNGdX2UKGgGR0BxvKWZ7XxwaAdN4AFoCEdAnwp7tzCDVnV9lChoBkdAcm8mygPEsWgHTZEBaAhHQJ8LbnGKhtd1fZQoaAZHQG3SdeIEbHZoB00hAmgIR0CfD1rmyPdVdX2UKGgGR0BPX40/GEPEaAdL12gIR0CfD5tFa0QcdX2UKGgGR0Bt87nTy8SPaAdNHgFoCEdAnxDt3jdYXHV9lChoBkdAUUpt8/lhgGgHS8poCEdAnxEOSntOVXV9lChoBkdAUvtb2USqVGgHS+RoCEdAnxL8eOn2qXV9lChoBkdAcFpzmOlwcmgHTUgBaAhHQJ8TVqqOtGN1fZQoaAZHQHLLLtNSIgxoB02kAWgIR0CfFdMtK7I1dX2UKGgGR0ByL80CRwIdaAdNswJoCEdAnxbFie/Ya3V9lChoBkdAcKAvRJEpiWgHTWYBaAhHQJ8Xb/4qPOp1fZQoaAZHQHA/reANG3FoB01zAWgIR0CfGEWkrPMTdX2UKGgGR0ByH6fAbhm5aAdNWQFoCEdAnxiuWSlnAnV9lChoBkdAcUVoDPnjhmgHTR0BaAhHQJ8ZbVNHpbF1fZQoaAZHQFNh4J/oaDRoB0vbaAhHQJ8brVmSQo11fZQoaAZHQHCXiuyNXHRoB02mAWgIR0CfHqO1fE4vdX2UKGgGR0BwD+lFc6eYaAdNLAFoCEdAnx7vA44p+nV9lChoBkdATi/7Hhjvu2gHS8loCEdAnx/NT1kDp3V9lChoBkdAcyjhJyyUtGgHTecBaAhHQJ8f4gX/HYJ1fZQoaAZHQG91w+t8uz1oB00fAWgIR0CfH+ywfQrudX2UKGgGR0BvOoH5aePJaAdNHgFoCEdAnx/2Yv38GnV9lChoBkdAcFgzDGcWkGgHTaQCaAhHQJ8geXVsk6d1fZQoaAZHQG6mhOHnEEVoB00oAWgIR0CfIUiliz9kdX2UKGgGR0BKMnLidat+aAdLymgIR0CfIcJKJ2t/dX2UKGgGR0BwlAs6JZW8aAdNSQFoCEdAnyJ1ocrAg3V9lChoBkdAZe3aM72crmgHTegDaAhHQJ8jJu+AVfx1fZQoaAZHQHEYUGeMAFRoB00OAWgIR0CfIy+B6KLsdX2UKGgGR0BxIM7MgU1yaAdNGwFoCEdAnyPR+z+m33V9lChoBkdAcKn46Oo5xWgHTWUBaAhHQJ8lfUb1h9d1fZQoaAZHQHAoQCSzPbBoB00JAWgIR0CfKPy/9Hc2dX2UKGgGR0Bx/Wz7di2EaAdN1gFoCEdAnymrEDQqqnV9lChoBkdAbh6YMvysjmgHTUQBaAhHQJ8+XTUiILx1fZQoaAZHQHAJfrnkkrxoB012AWgIR0CfP9iLVFx5dX2UKGgGR0ByvJdZ7ojfaAdNwgFoCEdAnz/si4axYHV9lChoBkdAb4N8pCrtFGgHTWcBaAhHQJ9ASlKsdT51fZQoaAZHQHEO5Q53kghoB01AAWgIR0CfQL8D0UXYdX2UKGgGR0Bwu0/jbSJCaAdNXAFoCEdAn0DbXpW3jXV9lChoBkdAbNYJTl1bJWgHTREBaAhHQJ9Bi0v4/NZ1fZQoaAZHQHEx3PAwfyRoB02XAWgIR0CfQu+evpyIdX2UKGgGR0BxmHvVmSQpaAdNWQFoCEdAn0PzuWrwOXV9lChoBkdAcFlTUy57PmgHTS4BaAhHQJ9ECJemelN1fZQoaAZHQHEiW+bmU4doB03WAWgIR0CfRHXZXdTHdX2UKGgGR0Bw9JfYzzmPaAdNYgFoCEdAn0VaE384xXV9lChoBkdAca2OAiFCcGgHTa0BaAhHQJ9GttBOYY11fZQoaAZHQHHkCjxkNF1oB014AWgIR0CfSlollbu/dX2UKGgGR0BuYfkLhJiBaAdNRgFoCEdAn01eCK77K3V9lChoBkdAcF+zWf9P12gHTV8BaAhHQJ9OCH9FWn11fZQoaAZHQG+uFpGnXNFoB00RAWgIR0CfTtKOT7l8dX2UKGgGR0BzZ01O0svqaAdNIwFoCEdAn1CckleF+XV9lChoBkdAR2WGj9GZu2gHS+loCEdAn1D6Cxu89XV9lChoBkdAUvc0GeMAFWgHS/doCEdAn1IBYigTRXV9lChoBkdAbXD79hqj8GgHTTEBaAhHQJ9UwHZ9NN91fZQoaAZHQG5mIi9qUNdoB01dAWgIR0CfVctp22XtdX2UKGgGR0Bw7ger+5vtaAdNMAFoCEdAn1avgBLf13V9lChoBkdAcHQeXRgJC2gHTboBaAhHQJ9XnTuv2Xd1fZQoaAZHQDgXhfjS5RVoB0vnaAhHQJ9YWwW3z+Z1fZQoaAZHQHAuQ/xDst1oB03DAWgIR0CfWQlE7W/bdX2UKGgGR0BwnxCSidrgaAdN+gFoCEdAn1sFXJYDDHV9lChoBkdAR4BT4tYjjmgHS89oCEdAn1wSZ0CA+nV9lChoBkdAc06dvsJID2gHS/loCEdAn10nhS9/SnV9lChoBkdAcGrvWH1vl2gHTcYBaAhHQJ9dS5xzaK11fZQoaAZHQHHM5YgaFVVoB01EAWgIR0CfXfns9jgAdX2UKGgGR0Bx/i7tiQT3aAdNQAFoCEdAn14uPFNtZXV9lChoBkdAcdpALRa5gGgHTUYCaAhHQJ9eiFfzBhx1fZQoaAZHQHJ0+kYXO4ZoB00lAWgIR0CfXoilBQendX2UKGgGR0ByEP212JSBaAdNXgFoCEdAn1+UzfrKNnV9lChoBkdAcQS7r9l2/2gHTRYBaAhHQJ9f7wF1SwZ1fZQoaAZHQDb/wDvE0i1oB0vqaAhHQJ9jtSde6Zp1fZQoaAZHQHLKGFnIyTJoB01oAmgIR0CfZGSnLq2SdX2UKGgGR0ByLkIAwPAgaAdNVgFoCEdAn2R/rfLs8nV9lChoBkdAbIQwi7kGRmgHTYYBaAhHQJ9k6oIfKZF1fZQoaAZHQEZYULUkOZtoB0vMaAhHQJ9lqqgh8pl1fZQoaAZHQEvIq814xDdoB0veaAhHQJ9lo9Oh0yR1fZQoaAZHQHAA3QpnYg9oB01iAWgIR0CfZc+b3Gn5dX2UKGgGR0Bu19B0IToMaAdNnwFoCEdAn2ZthuwX7HV9lChoBkdAccBnWJ79h2gHTRsBaAhHQJ9ouVJL/S91fZQoaAZHQHCRSGahHsloB01TAWgIR0CfaMmXPZ7HdX2UKGgGR0ByJgEovzvraAdNtgFoCEdAn2l0kjX4CnV9lChoBkdAbyxBLwnYx2gHTQwBaAhHQJ9pta5f+jx1fZQoaAZHQHCI1fiPyTZoB00bAWgIR0CfaobrTpgUdX2UKGgGR0BvbVEiMYMwaAdNjAFoCEdAn2ul85S3s3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}