TachyHealthResearch commited on
Commit
0935935
·
1 Parent(s): d0e45e8

Training in progress, step 65, checkpoint

Browse files
last-checkpoint/README.md ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: argilla/notus-7b-v1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: True
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+ - PEFT 0.7.0
last-checkpoint/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "argilla/notus-7b-v1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "gate_proj",
23
+ "o_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "down_proj",
27
+ "up_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
last-checkpoint/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d9fc74ce84dac6202490c7c3824a7a328e0f3594a27820785f7e1ea780f874f
3
+ size 83945296
last-checkpoint/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ba4133ce606f37cb82e6383468a37dbcb7a854d0d3aaa2f406bb8706e38b073
3
+ size 42545748
last-checkpoint/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6376f78de9d6501f496c4dd46738ff9438d8e16db2e3a4d56d72fb1753a98312
3
+ size 14244
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25af55feb1b9903fcca68f02f47bace5e1e3ee14f2adaa2a9b2e961c20b03a84
3
+ size 1064
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.026,
5
+ "eval_steps": 1000,
6
+ "global_step": 65,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 6.666666666666667e-05,
14
+ "loss": 2.0489,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00013333333333333334,
20
+ "loss": 1.8868,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 0.0002,
26
+ "loss": 1.6708,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.0,
31
+ "learning_rate": 0.00019793814432989693,
32
+ "loss": 1.9559,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.0,
37
+ "learning_rate": 0.00019587628865979381,
38
+ "loss": 1.6901,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "learning_rate": 0.00019381443298969073,
44
+ "loss": 2.2035,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.0,
49
+ "learning_rate": 0.00019175257731958765,
50
+ "loss": 2.4562,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.0,
55
+ "learning_rate": 0.00018969072164948454,
56
+ "loss": 1.4477,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.0,
61
+ "learning_rate": 0.00018762886597938145,
62
+ "loss": 1.938,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.0,
67
+ "learning_rate": 0.00018556701030927837,
68
+ "loss": 1.941,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.0,
73
+ "learning_rate": 0.00018350515463917526,
74
+ "loss": 1.7198,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.0,
79
+ "learning_rate": 0.00018144329896907217,
80
+ "loss": 1.96,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.01,
85
+ "learning_rate": 0.0001793814432989691,
86
+ "loss": 1.7657,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.01,
91
+ "learning_rate": 0.00017731958762886598,
92
+ "loss": 1.7391,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.01,
97
+ "learning_rate": 0.0001752577319587629,
98
+ "loss": 1.7447,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.01,
103
+ "learning_rate": 0.0001731958762886598,
104
+ "loss": 1.5251,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.01,
109
+ "learning_rate": 0.0001711340206185567,
110
+ "loss": 1.7227,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.01,
115
+ "learning_rate": 0.00016907216494845361,
116
+ "loss": 2.5511,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.01,
121
+ "learning_rate": 0.00016701030927835053,
122
+ "loss": 1.4848,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.01,
127
+ "learning_rate": 0.00016494845360824742,
128
+ "loss": 1.9532,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.01,
133
+ "learning_rate": 0.00016288659793814434,
134
+ "loss": 1.879,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.01,
139
+ "learning_rate": 0.00016082474226804125,
140
+ "loss": 1.7689,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.01,
145
+ "learning_rate": 0.00015876288659793814,
146
+ "loss": 1.5917,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.01,
151
+ "learning_rate": 0.00015670103092783506,
152
+ "loss": 1.9113,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.01,
157
+ "learning_rate": 0.00015463917525773197,
158
+ "loss": 1.5997,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.01,
163
+ "learning_rate": 0.00015257731958762886,
164
+ "loss": 1.7558,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.01,
169
+ "learning_rate": 0.00015051546391752578,
170
+ "loss": 1.4693,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.01,
175
+ "learning_rate": 0.0001484536082474227,
176
+ "loss": 1.498,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.01,
181
+ "learning_rate": 0.00014639175257731958,
182
+ "loss": 1.6517,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.01,
187
+ "learning_rate": 0.0001443298969072165,
188
+ "loss": 1.5836,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.01,
193
+ "learning_rate": 0.00014226804123711342,
194
+ "loss": 1.7213,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.01,
199
+ "learning_rate": 0.0001402061855670103,
200
+ "loss": 1.4432,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.01,
205
+ "learning_rate": 0.00013814432989690722,
206
+ "loss": 2.1706,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.01,
211
+ "learning_rate": 0.00013608247422680414,
212
+ "loss": 1.613,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.01,
217
+ "learning_rate": 0.00013402061855670103,
218
+ "loss": 1.7608,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.01,
223
+ "learning_rate": 0.00013195876288659794,
224
+ "loss": 1.6158,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.01,
229
+ "learning_rate": 0.00012989690721649486,
230
+ "loss": 1.5101,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.02,
235
+ "learning_rate": 0.00012783505154639175,
236
+ "loss": 1.5626,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.02,
241
+ "learning_rate": 0.00012577319587628866,
242
+ "loss": 2.1865,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.02,
247
+ "learning_rate": 0.00012371134020618558,
248
+ "loss": 1.4066,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.02,
253
+ "learning_rate": 0.00012164948453608247,
254
+ "loss": 1.4324,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.02,
259
+ "learning_rate": 0.00011958762886597938,
260
+ "loss": 1.7029,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.02,
265
+ "learning_rate": 0.0001175257731958763,
266
+ "loss": 1.9695,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.02,
271
+ "learning_rate": 0.00011546391752577319,
272
+ "loss": 1.7016,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.02,
277
+ "learning_rate": 0.0001134020618556701,
278
+ "loss": 1.768,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.02,
283
+ "learning_rate": 0.00011134020618556702,
284
+ "loss": 1.3867,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.02,
289
+ "learning_rate": 0.00010927835051546391,
290
+ "loss": 1.8445,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.02,
295
+ "learning_rate": 0.00010721649484536083,
296
+ "loss": 1.5515,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.02,
301
+ "learning_rate": 0.00010515463917525774,
302
+ "loss": 1.7586,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.02,
307
+ "learning_rate": 0.00010309278350515463,
308
+ "loss": 1.4246,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.02,
313
+ "learning_rate": 0.00010103092783505155,
314
+ "loss": 1.7533,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.02,
319
+ "learning_rate": 9.896907216494846e-05,
320
+ "loss": 1.6105,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.02,
325
+ "learning_rate": 9.690721649484537e-05,
326
+ "loss": 1.5276,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.02,
331
+ "learning_rate": 9.484536082474227e-05,
332
+ "loss": 1.3974,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.02,
337
+ "learning_rate": 9.278350515463918e-05,
338
+ "loss": 1.4832,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.02,
343
+ "learning_rate": 9.072164948453609e-05,
344
+ "loss": 1.695,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.02,
349
+ "learning_rate": 8.865979381443299e-05,
350
+ "loss": 1.6554,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.02,
355
+ "learning_rate": 8.65979381443299e-05,
356
+ "loss": 1.5769,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.02,
361
+ "learning_rate": 8.453608247422681e-05,
362
+ "loss": 1.8362,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.02,
367
+ "learning_rate": 8.247422680412371e-05,
368
+ "loss": 1.5832,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.02,
373
+ "learning_rate": 8.041237113402063e-05,
374
+ "loss": 1.6469,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.02,
379
+ "learning_rate": 7.835051546391753e-05,
380
+ "loss": 1.5835,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.03,
385
+ "learning_rate": 7.628865979381443e-05,
386
+ "loss": 1.5521,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.03,
391
+ "learning_rate": 7.422680412371135e-05,
392
+ "loss": 1.3237,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.03,
397
+ "learning_rate": 7.216494845360825e-05,
398
+ "loss": 1.413,
399
+ "step": 65
400
+ }
401
+ ],
402
+ "logging_steps": 1,
403
+ "max_steps": 100,
404
+ "num_train_epochs": 1,
405
+ "save_steps": 5,
406
+ "total_flos": 3836019066667008.0,
407
+ "trial_name": null,
408
+ "trial_params": null
409
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5059c653756752cb24f5c1887d956f8a30f1a817ab283357ddbf07235a6cac86
3
+ size 4600