File size: 4,667 Bytes
6bc2011 bca1e5f 6bc2011 bca1e5f 6bc2011 bca1e5f 6bc2011 bca1e5f 6bc2011 bca1e5f 6bc2011 bca1e5f 6bc2011 bca1e5f 6bc2011 bca1e5f 6bc2011 bca1e5f 6bc2011 bca1e5f 6bc2011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
[paths]
train = "corpus/filter-train.spacy"
dev = "corpus/filter-test.spacy"
vectors = "en_core_web_lg"
init_tok2vec = null
[variables]
wandb_project_name = "tako-query-filter"
wandb_team_name = "tako-team"
base_model = "ner/dashing-wind"
[system]
gpu_allocator = "pytorch"
seed = 0
[nlp]
lang = "en"
pipeline = ["tok2vec","ner","textcat_classify"]
batch_size = 1000
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
vectors = {"@vectors":"spacy.Vectors.v1"}
[components]
[components.ner]
factory = "ner"
incorrect_spans_key = null
moves = null
scorer = {"@scorers":"spacy.ner_scorer.v1"}
update_with_oracle_cut_size = 100
[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 128
maxout_pieces = 3
use_upper = true
nO = null
[components.ner.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = 256
upstream = "*"
[components.textcat_classify]
factory = "weighted_textcat"
class_weights = [0.67,0.33]
scorer = {"@scorers":"spacy.textcat_scorer.v2"}
threshold = 0.0
[components.textcat_classify.model]
@architectures = "spacy.TextCatEnsemble.v2"
nO = null
[components.textcat_classify.model.linear_model]
@architectures = "spacy.TextCatBOW.v3"
exclusive_classes = false
length = 262144
ngram_size = 1
no_output_layer = false
nO = null
[components.textcat_classify.model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[components.textcat_classify.model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 128
attrs = ["NORM","PREFIX","SUFFIX","SHAPE","ENT_TYPE"]
rows = [2000,500,1000,500,500]
include_static_vectors = true
[components.textcat_classify.model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 128
window_size = 1
maxout_pieces = 3
depth = 4
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.Tok2Vec.v2"
[components.tok2vec.model.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 256
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
rows = [5000,1000,2500,2500]
include_static_vectors = true
[components.tok2vec.model.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = 256
window_size = 1
maxout_pieces = 3
depth = 8
[corpora]
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 0
gold_preproc = false
limit = 0
[corpora.train.augmenter]
@augmenters = "spacy.lower_case.v1"
level = 0.3
[training]
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
accumulate_gradient = 1
patience = 1000
max_epochs = 0
max_steps = 20000
eval_frequency = 100
frozen_components = ["tagger","attribute_ruler","parser","tok2vec","ner"]
annotating_components = ["ner"]
before_to_disk = null
before_update = null
[training.batcher]
@batchers = "spacy.batch_by_sequence.v1"
get_length = null
[training.batcher.size]
@schedules = "compounding.v1"
start = 100
stop = 2000
compound = 1.001
t = 0.0
[training.logger]
@loggers = "spacy.ChainLogger.v1"
logger3 = null
logger4 = null
logger5 = null
logger6 = null
logger7 = null
logger8 = null
logger9 = null
logger10 = null
[training.logger.logger1]
@loggers = "spacy.ConsoleLogger.v1"
progress_bar = false
[training.logger.logger2]
@loggers = "spacy.WandbLogger.v5"
project_name = ${variables.wandb_project_name}
remove_config_values = []
model_log_interval = null
log_dataset_dir = null
entity = null
run_name = null
log_best_dir = null
log_latest_dir = null
log_custom_stats = null
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
learn_rate = 0.001
[training.score_weights]
ents_f = 0.5
ents_p = 0.0
ents_r = 0.0
ents_per_type = null
cats_score = 0.25
cats_score_desc = null
cats_micro_p = null
cats_micro_r = 0.25
cats_micro_f = null
cats_macro_p = null
cats_macro_r = null
cats_macro_f = null
cats_macro_auc = null
cats_f_per_type = null
[pretraining]
[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.components.textcat_classify]
positive_label = "ACCEPT"
[initialize.components.textcat_classify.labels]
@readers = "spacy.read_labels.v1"
path = "corpus/labels/filter-labels/textcat_classify.json"
require = false
[initialize.tokenizer] |