[paths] train = "corpus/classify-train.spacy" dev = "corpus/classify-test.spacy" vectors = "en_core_web_lg" init_tok2vec = null [variables] wandb_project_name = "tako-query-filter" wandb_team_name = "tako-team" [system] gpu_allocator = "pytorch" seed = 0 [nlp] lang = "en" pipeline = ["tok2vec","ner","textcat","textcat_classify"] batch_size = 1000 disabled = [] before_creation = null after_creation = null after_pipeline_creation = null tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} vectors = {"@vectors":"spacy.Vectors.v1"} [components] [components.ner] factory = "ner" incorrect_spans_key = null moves = null scorer = {"@scorers":"spacy.ner_scorer.v1"} update_with_oracle_cut_size = 100 [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "ner" extra_state_tokens = false hidden_width = 128 maxout_pieces = 3 use_upper = true nO = null [components.ner.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 256 upstream = "*" [components.textcat] factory = "textcat" scorer = {"@scorers":"spacy.textcat_scorer.v2"} threshold = 0.0 [components.textcat.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat.model.linear_model] @architectures = "spacy.TextCatBOW.v3" exclusive_classes = false length = 262144 ngram_size = 1 no_output_layer = false nO = null [components.textcat.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 256 upstream = "*" [components.textcat_classify] factory = "textcat" scorer = {"@scorers":"spacy.textcat_scorer.v2"} threshold = 0.0 [components.textcat_classify.model] @architectures = "spacy.TextCatEnsemble.v2" nO = null [components.textcat_classify.model.linear_model] @architectures = "spacy.TextCatBOW.v3" exclusive_classes = false length = 262144 ngram_size = 1 no_output_layer = false nO = null [components.textcat_classify.model.tok2vec] @architectures = "spacy.Tok2Vec.v2" [components.textcat_classify.model.tok2vec.embed] @architectures = "spacy.MultiHashEmbed.v2" width = 256 attrs = ["NORM","PREFIX","SUFFIX","SHAPE","ENT_TYPE"] rows = [5000,1000,2500,2500,1000] include_static_vectors = true [components.textcat_classify.model.tok2vec.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 256 window_size = 1 maxout_pieces = 3 depth = 8 [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v2" width = 256 attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] rows = [5000,1000,2500,2500] include_static_vectors = true [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 256 window_size = 1 maxout_pieces = 3 depth = 8 [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} max_length = 0 gold_preproc = false limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} max_length = 0 gold_preproc = false limit = 0 [corpora.train.augmenter] @augmenters = "spacy.lower_case.v1" level = 0.3 [training] dev_corpus = "corpora.dev" train_corpus = "corpora.train" seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 3000 max_epochs = 0 max_steps = 20000 eval_frequency = 100 frozen_components = ["tok2vec","ner","textcat"] annotating_components = ["ner","textcat"] before_to_disk = null before_update = null [training.batcher] @batchers = "spacy.batch_by_sequence.v1" get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 2000 compound = 1.001 t = 0.0 [training.logger] @loggers = "spacy.ChainLogger.v1" logger3 = null logger4 = null logger5 = null logger6 = null logger7 = null logger8 = null logger9 = null logger10 = null [training.logger.logger1] @loggers = "spacy.ConsoleLogger.v1" progress_bar = false [training.logger.logger2] @loggers = "spacy.WandbLogger.v5" project_name = ${variables.wandb_project_name} remove_config_values = [] model_log_interval = null log_dataset_dir = null entity = null run_name = null log_best_dir = null log_latest_dir = null log_custom_stats = null [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 learn_rate = 0.001 [training.score_weights] ents_f = 0.5 ents_p = 0.0 ents_r = 0.0 ents_per_type = null cats_score = 0.25 cats_score_desc = null cats_micro_p = null cats_micro_r = 0.25 cats_micro_f = null cats_macro_p = null cats_macro_r = null cats_macro_f = null cats_macro_auc = null cats_f_per_type = null [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.components.textcat_classify] positive_label = "ACCEPT" [initialize.components.textcat_classify.labels] @readers = "spacy.read_labels.v1" path = "corpus/labels/filter-labels/textcat_classify.json" require = false [initialize.tokenizer]