File size: 3,127 Bytes
1b67e82 ff86fda 1b67e82 ff86fda 1b67e82 ff86fda 1b67e82 ff86fda 1b67e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: multiple_answer_QA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multiple_answer_QA
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.7334
- Accuracy: 0.2675
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 175 | 1.3886 | 0.23 |
| No log | 2.0 | 350 | 1.3892 | 0.255 |
| 1.3936 | 3.0 | 525 | 1.3863 | 0.2375 |
| 1.3936 | 4.0 | 700 | 1.3868 | 0.255 |
| 1.3936 | 5.0 | 875 | 1.4511 | 0.26 |
| 1.2973 | 6.0 | 1050 | 1.6738 | 0.24 |
| 1.2973 | 7.0 | 1225 | 1.9684 | 0.265 |
| 1.2973 | 8.0 | 1400 | 2.5002 | 0.28 |
| 0.6916 | 9.0 | 1575 | 2.9872 | 0.28 |
| 0.6916 | 10.0 | 1750 | 3.2354 | 0.28 |
| 0.6916 | 11.0 | 1925 | 3.6618 | 0.3025 |
| 0.2428 | 12.0 | 2100 | 4.1750 | 0.275 |
| 0.2428 | 13.0 | 2275 | 4.1384 | 0.275 |
| 0.2428 | 14.0 | 2450 | 4.5173 | 0.26 |
| 0.1118 | 15.0 | 2625 | 4.6013 | 0.275 |
| 0.1118 | 16.0 | 2800 | 4.2549 | 0.2525 |
| 0.1118 | 17.0 | 2975 | 5.2751 | 0.275 |
| 0.0482 | 18.0 | 3150 | 4.9489 | 0.275 |
| 0.0482 | 19.0 | 3325 | 5.6077 | 0.28 |
| 0.0261 | 20.0 | 3500 | 5.3054 | 0.2625 |
| 0.0261 | 21.0 | 3675 | 5.1955 | 0.2625 |
| 0.0261 | 22.0 | 3850 | 5.6210 | 0.2575 |
| 0.0175 | 23.0 | 4025 | 5.6576 | 0.25 |
| 0.0175 | 24.0 | 4200 | 5.6687 | 0.2725 |
| 0.0175 | 25.0 | 4375 | 5.6082 | 0.255 |
| 0.0133 | 26.0 | 4550 | 5.5999 | 0.27 |
| 0.0133 | 27.0 | 4725 | 5.7972 | 0.26 |
| 0.0133 | 28.0 | 4900 | 5.6427 | 0.2575 |
| 0.0089 | 29.0 | 5075 | 5.7253 | 0.2675 |
| 0.0089 | 30.0 | 5250 | 5.7334 | 0.2675 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|