[paths] train = "02_train" dev = "03_valid" vectors = null init_tok2vec = null [system] gpu_allocator = null seed = 0 [nlp] lang = "sr" pipeline = ["tok2vec","tagger","ner","sentencizer","entity_linker"] batch_size = 1000 disabled = [] before_creation = null after_creation = null after_pipeline_creation = null tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} [components] [components.entity_linker] factory = "entity_linker" candidates_batch_size = 1 entity_vector_length = 64 generate_empty_kb = {"@misc":"spacy.EmptyKB.v2"} get_candidates = {"@misc":"spacy.CandidateGenerator.v1"} get_candidates_batch = {"@misc":"spacy.CandidateBatchGenerator.v1"} incl_context = true incl_prior = false labels_discard = [] n_sents = 0 overwrite = true scorer = {"@scorers":"spacy.entity_linker_scorer.v1"} threshold = null use_gold_ents = true [components.entity_linker.model] @architectures = "spacy.EntityLinker.v2" nO = null [components.entity_linker.model.tok2vec] @architectures = "spacy.HashEmbedCNN.v2" pretrained_vectors = null width = 96 depth = 2 embed_size = 2000 window_size = 1 maxout_pieces = 3 subword_features = true [components.ner] factory = "ner" incorrect_spans_key = null moves = null scorer = {"@scorers":"spacy.ner_scorer.v1"} update_with_oracle_cut_size = 100 [components.ner.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "ner" extra_state_tokens = true hidden_width = 300 maxout_pieces = 2 use_upper = true nO = null [components.ner.model.tok2vec] @architectures = "spacy.HashEmbedCNN.v2" pretrained_vectors = null width = 300 depth = 8 embed_size = 10000 window_size = 1 maxout_pieces = 3 subword_features = true [components.sentencizer] factory = "sentencizer" overwrite = false punct_chars = null scorer = {"@scorers":"spacy.senter_scorer.v1"} [components.tagger] factory = "tagger" neg_prefix = "!" overwrite = false scorer = {"@scorers":"spacy.tagger_scorer.v1"} [components.tagger.model] @architectures = "spacy.Tagger.v1" nO = null [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = 300 upstream = "*" [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v2" width = 300 attrs = ["ORTH","SHAPE"] rows = [5000,2500] include_static_vectors = true [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 300 depth = 4 window_size = 1 maxout_pieces = 3 [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} max_length = 0 gold_preproc = false limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} max_length = 2000 gold_preproc = false limit = 0 augmenter = null [training] dev_corpus = "corpora.dev" train_corpus = "corpora.train" seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 frozen_components = [] annotating_components = [] before_to_disk = null before_update = null [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 t = 0.0 [training.logger] @loggers = "spacy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 learn_rate = 0.001 [training.score_weights] tag_acc = 0.17 ents_f = 0.17 ents_p = 0.0 ents_r = 0.0 ents_per_type = null sents_f = 0.33 sents_p = 0.0 sents_r = 0.0 nel_micro_f = 0.33 nel_micro_r = null nel_micro_p = null [pretraining] [initialize] vectors = null init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.tokenizer]