Tanvi03 commited on
Commit
44201ee
·
verified ·
1 Parent(s): b67b098

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -44
README.md CHANGED
@@ -65,15 +65,15 @@ generated_text = generate_text(prompt)
65
  print(generated_text)
66
  ```
67
 
68
- ## Training Details
69
 
70
- <!-- -->
 
71
  ### Training Data
72
  This link provides the Evol-Instruct question-and-answer dataset
73
  https://raw.githubusercontent.com/M-e-e-n-a/Synthetic-Dataset-Creation/main/combined_dataset.json
74
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
75
 
76
- ### Training Procedure
77
 
78
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
79
 
@@ -197,7 +197,7 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
197
  [More Information Needed]--->
198
  ## Results
199
 
200
- ## Evaluation Metrics
201
 
202
  <table>
203
  <thead>
@@ -211,60 +211,61 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
211
  </thead>
212
  <tbody>
213
  <tr>
214
- <td>ROUGE-1</td>
215
- <td>0.3117</td>
216
- <td>0.3188</td>
217
- <td>0.2637</td>
218
- <td>0.3281</td>
219
  </tr>
220
  <tr>
221
- <td>ROUGE-2</td>
222
- <td>0.1867</td>
223
- <td>0.1176</td>
224
- <td>0.1573</td>
225
- <td>0.1270</td>
226
  </tr>
227
  <tr>
228
- <td>ROUGE-L</td>
229
- <td>0.1818</td>
230
- <td>0.1449</td>
231
- <td>0.2637</td>
232
- <td>0.2031</td>
233
  </tr>
234
  <tr>
235
- <td>ROUGE-LSUM</td>
236
- <td>0.1818</td>
237
- <td>0.1449</td>
238
- <td>0.2637</td>
239
- <td>0.2031</td>
240
  </tr>
241
  <tr>
242
- <td>METEOR</td>
243
- <td>0.0693</td>
244
- <td>0.3088</td>
245
- <td>0.4377</td>
246
- <td>0.3662</td>
247
  </tr>
248
  <tr>
249
- <td>BERTScore</td>
250
- <td>0.8262</td>
251
- <td>0.8538</td>
252
- <td>0.9070</td>
253
- <td>0.8782</td>
254
  </tr>
255
  <tr>
256
- <td>G-Eval</td>
257
- <td>0.35</td>
258
- <td>0.42</td>
259
- <td>0.78</td>
260
- <td>0.87</td>
261
  </tr>
262
  <tr>
263
- <td>QAG Score</td>
264
- <td>0.1046</td>
265
- <td>0.2061</td>
266
- <td>0.3762</td>
267
- <td>0.2609</td>
268
  </tr>
269
  </tbody>
270
  </table>
 
 
65
  print(generated_text)
66
  ```
67
 
 
68
 
69
+
70
+ <!--## Training Details -->
71
  ### Training Data
72
  This link provides the Evol-Instruct question-and-answer dataset
73
  https://raw.githubusercontent.com/M-e-e-n-a/Synthetic-Dataset-Creation/main/combined_dataset.json
74
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
75
 
76
+ <!--### Training Procedure -->
77
 
78
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
79
 
 
197
  [More Information Needed]--->
198
  ## Results
199
 
200
+ ## Evaluation Metrics
201
 
202
  <table>
203
  <thead>
 
211
  </thead>
212
  <tbody>
213
  <tr>
214
+ <td align="center">ROUGE-1</td>
215
+ <td align="center">0.3117</td>
216
+ <td align="center">0.3188</td>
217
+ <td align="center">0.2637</td>
218
+ <td align="center">0.3281</td>
219
  </tr>
220
  <tr>
221
+ <td align="center">ROUGE-2</td>
222
+ <td align="center">0.1867</td>
223
+ <td align="center">0.1176</td>
224
+ <td align="center">0.1573</td>
225
+ <td align="center">0.1270</td>
226
  </tr>
227
  <tr>
228
+ <td align="center">ROUGE-L</td>
229
+ <td align="center">0.1818</td>
230
+ <td align="center">0.1449</td>
231
+ <td align="center">0.2637</td>
232
+ <td align="center">0.2031</td>
233
  </tr>
234
  <tr>
235
+ <td align="center">ROUGE-LSUM</td>
236
+ <td align="center">0.1818</td>
237
+ <td align="center">0.1449</td>
238
+ <td align="center">0.2637</td>
239
+ <td align="center">0.2031</td>
240
  </tr>
241
  <tr>
242
+ <td align="center">METEOR</td>
243
+ <td align="center">0.0693</td>
244
+ <td align="center">0.3088</td>
245
+ <td align="center">0.4377</td>
246
+ <td align="center">0.3662</td>
247
  </tr>
248
  <tr>
249
+ <td align="center">BERTScore</td>
250
+ <td align="center">0.8262</td>
251
+ <td align="center">0.8538</td>
252
+ <td align="center">0.9070</td>
253
+ <td align="center">0.8782</td>
254
  </tr>
255
  <tr>
256
+ <td align="center">G-Eval</td>
257
+ <td align="center">0.35</td>
258
+ <td align="center">0.42</td>
259
+ <td align="center">0.78</td>
260
+ <td align="center">0.87</td>
261
  </tr>
262
  <tr>
263
+ <td align="center">QAG Score</td>
264
+ <td align="center">0.1046</td>
265
+ <td align="center">0.2061</td>
266
+ <td align="center">0.3762</td>
267
+ <td align="center">0.2609</td>
268
  </tr>
269
  </tbody>
270
  </table>
271
+