File size: 13,635 Bytes
cd60dc4
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f957857ae60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f957857aef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f957857af80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f957857b010>", "_build": "<function ActorCriticPolicy._build at 0x7f957857b0a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f957857b130>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f957857b1c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f957857b250>", "_predict": "<function ActorCriticPolicy._predict at 0x7f957857b2e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f957857b370>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f957857b400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f957857b490>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9578576580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683742357089126323, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGavM71cMzC6ZtTnOlJzFzZAygU6aKkJugAAgD8AAIA/TQsTvmb0ND9e3B2+ZNoEv5QnRr6A61E9AAAAAAAAAACaN+Y8aYB9vLksGjx6/lu9LAigvYKkmL4AAIA/AACAP5qskrw0ibk/JnTevmJ7xz7orQU8MA6qvAAAAAAAAAAApk4XPsEpHj8+KGe+qze3vskD+zwu9MW9AAAAAAAAAAAz9368AYtOPqZgTb5CO/a+LhOIviCGOz0AAAAAAAAAAADW6LzfQCM+2B2BvFNto75lgc28tu1IvQAAAAAAAAAAeuNPPl7kbT+da+u9Iauzvvbv5j7JBhC+AAAAAAAAAAAtGGw+d+CFP6tf3b25Ht2++JDyPqkjDb4AAAAAAAAAAE2H0b1nfxQ+K9uHPpJ2pL5jhKq8Oga7PQAAAAAAAAAAM9+1u/ianDxmsl4+PqtMvs1ROj1TTTo8AAAAAAAAAAAN5eS9TOYwPpLInT5QvXG+sCKzPMIs0z0AAAAAAAAAAIDBm70hnAw/kTsRPucb1r7ZqKq9pqOYPQAAAAAAAAAAzcZLPfbYG7quKSUzKVR6MCuTerttoMWzAACAPwAAgD+zJxy97YWUPzuu473xwPe+0UVbvXGtG70AAAAAAAAAAJp+NT2f7sq7BaVougCuDj1lBjQ9EOXqvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJKf6O5rgyMAWyUS+KMAXSUR0CvDZ2gezUrdX2UKGgGR0Bx7WiqQzUJaAdNEQFoCEdArw28GRmseXV9lChoBkdAcmCRJEpiJGgHS9poCEdArw28Fr2xp3V9lChoBkdAcrc1mapgkWgHS+doCEdArw4Ug8r7O3V9lChoBkdAcE6cTrVvuWgHS9hoCEdArw40B8x9HHV9lChoBkdAcQ7bPhQ3xWgHS+1oCEdArw6TuMMqjXV9lChoBkdAcJNUpuuRtGgHS9hoCEdArw6l83Mpw3V9lChoBkdAcl+kIX0oSmgHS/1oCEdArw89l7MPjHV9lChoBkdAcBBzI3irDWgHS9poCEdArw9wMSbpeXV9lChoBkdActvupS75EmgHS8toCEdArw+GE0zj3nV9lChoBkdAcse0xdpqRGgHS9FoCEdArw+XkPtlZ3V9lChoBkdAcuhiYLLIP2gHS89oCEdArw+a4tpVTHV9lChoBkdAcab1sLv1DmgHS+9oCEdArxBWwiaAnXV9lChoBkdAcA+uxbB42WgHS+xoCEdArxB0oQWepXV9lChoBkdAb9S4bS7XhGgHS/hoCEdArxCEl5WzW3V9lChoBkdAcgNPyTY/V2gHS9poCEdArxCfMY/FBXV9lChoBkdAci7RQaaTfWgHS95oCEdArxD35rP+oHV9lChoBkdAcP8PHT7VKGgHS+VoCEdArxE5NVR1o3V9lChoBkdAc6bzEJjUeGgHS/poCEdArxGJ1vES/XV9lChoBkdAcUZvgWJrL2gHS+doCEdArxGlnVXmvHV9lChoBkdAcM1iKiwjdGgHS+RoCEdArxG04m1IAnV9lChoBkdAcMAqSHM2WWgHS99oCEdArxIM9pyp73V9lChoBkdAcotwpvxYrGgHS+hoCEdArxIdmJ3xF3V9lChoBkdAcijDdP+GXWgHS9BoCEdArxJrel9Br3V9lChoBkdAcfPvhqCYkWgHS+hoCEdArxMTu2JBPnV9lChoBkdAUkXK/20zCWgHS61oCEdArxM5Huqm0nV9lChoBkdAcegbTc6/7GgHS+toCEdArxNQdU83dnV9lChoBkdAcZ3eLNwBHWgHS/FoCEdArxNvT1CgLHV9lChoBkdAcMGRvFWGRGgHS/9oCEdArxOVPk7wKHV9lChoBkdAcm3fQa72+WgHS+VoCEdArx1MTpPhynV9lChoBkdAcSkiWVu76GgHS9NoCEdArx2EJ0GNaXV9lChoBkdAcroTwUg0TGgHS/FoCEdArx2H/7zkIXV9lChoBkdAcqWB8QZn+WgHS/NoCEdArx2biwSrYHV9lChoBkdAccRihFmWdGgHS9poCEdArx3FmFrVOXV9lChoBkdAb/EqtHQQc2gHS9VoCEdArx4SBClabHV9lChoBkdAcD8aTwDvE2gHS+VoCEdArx4gLy+YdHV9lChoBkdAci67rs0HhWgHS8FoCEdArx4o6bONYXV9lChoBkdAcxgUDuBtlGgHS/NoCEdArx5W717IDHV9lChoBkdAcNahqTKT0WgHS9doCEdArx6bjghr33V9lChoBkdAcLsknTiKi2gHS/toCEdArx67gOz6anV9lChoBkdAbaqg9vCMxWgHS9JoCEdArx7zlNlAeXV9lChoBkdAc6MjRlYlp2gHS+hoCEdArx9qSX+l03V9lChoBkdAcVXq94/u9mgHS/5oCEdArx+JSR8tw3V9lChoBkdAcdk4xk/bCmgHS/1oCEdArx+WxKQJX3V9lChoBkdAcmWa1TisGWgHS8loCEdArx+9x+8XenV9lChoBkdAcBjeJHiFTWgHS89oCEdArx/LYqXnhnV9lChoBkdAcbQQ2uPmxWgHS+xoCEdArx/io/A0sXV9lChoBkdAc0gz7/GVA2gHTQgBaAhHQK8f4jlgc951fZQoaAZHQHAACLuQZGdoB0vTaAhHQK8f7uyeI2x1fZQoaAZHQG2ZPMSsbNtoB0vOaAhHQK8gCWLxZuB1fZQoaAZHQG6wIQe3hGZoB0vdaAhHQK8gjxXnyNJ1fZQoaAZHQHJu7PD50r9oB0vuaAhHQK8gqYFaB7N1fZQoaAZHQHCkrQgLZzxoB0vbaAhHQK8gvPmgam51fZQoaAZHQHJfe2E0zj5oB0vzaAhHQK8gxpUPxx11fZQoaAZHQHDudRaX8fpoB0vqaAhHQK8hLfMOf/Z1fZQoaAZHQHKKpmmLtNVoB0vnaAhHQK8hRxMFlkJ1fZQoaAZHQG1ENW2gFotoB0vvaAhHQK8hmOIZZSx1fZQoaAZHQHEnOIyj59FoB0vSaAhHQK8hvvWH1vl1fZQoaAZHQHDt72xptaZoB0vmaAhHQK8iGAksz2x1fZQoaAZHQG51TV2A5JdoB0vlaAhHQK8iJMXaakR1fZQoaAZHQG93CTdLxqhoB0vZaAhHQK8iKnZ00WN1fZQoaAZHQHMYSsr/bTNoB0vbaAhHQK8iPhd+ocd1fZQoaAZHQG7cQyylenhoB0vvaAhHQK8ijzOHFgl1fZQoaAZHQHJSYLofSx9oB0viaAhHQK8ilvn8sMB1fZQoaAZHQHJGphfBvaVoB0vxaAhHQK8iom2LHdZ1fZQoaAZHQHBzZxJd0JZoB0v+aAhHQK8iucT8HfN1fZQoaAZHQHPH1qi48U5oB0vcaAhHQK8jExbjcVR1fZQoaAZHQHK80jxCpm5oB0vdaAhHQK8jSaS9ugp1fZQoaAZHQHHpKSkj5bhoB0vNaAhHQK8jg0Mw1zh1fZQoaAZHQHI/UKJEYwZoB0v6aAhHQK8jkwyIpH91fZQoaAZHQHNA5fYzzmRoB0vNaAhHQK8jmveP7vZ1fZQoaAZHQHHppI6Kcd5oB00GAWgIR0CvI6M+V1OkdX2UKGgGR0Byoe0v4/NaaAdL2mgIR0CvJAWHtWuHdX2UKGgGR0Bv1PrY5DJEaAdL3mgIR0CvJDTHsC1adX2UKGgGR0BzXedCmdiEaAdL1WgIR0CvJHrsrupkdX2UKGgGR0Bv6aLyc0+DaAdL3mgIR0CvJJp/G2kSdX2UKGgGR0BwqRqJuVHGaAdL3mgIR0CvJK2q94/vdX2UKGgGR0BxPRYSxqwhaAdL9mgIR0CvJM6PCEYgdX2UKGgGR0By2NMj/uLKaAdL1GgIR0CvJQrQ5WBCdX2UKGgGR0BzLihwl0HRaAdL42gIR0CvJRI8QqZudX2UKGgGR0BwbP9n9NvgaAdLyWgIR0CvJUUOd5IIdX2UKGgGR0BwC2w3YL9daAdL92gIR0CvJUNwBHTadX2UKGgGR0By/rO4XoC/aAdL/WgIR0CvJWW912aEdX2UKGgGR0Byf6iblRxcaAdL6mgIR0CvJdJPRArydX2UKGgGR0BwtAal1r6+aAdLzmgIR0CvJdvq9oN/dX2UKGgGR0Byy//CIk7faAdL0GgIR0CvJdocinpCdX2UKGgGR0ByMce0Xxe+aAdL5GgIR0CvJgi0ngHedX2UKGgGR0Bu7iUkfLcLaAdNCAFoCEdAryZdCPZIx3V9lChoBkdAcPfk+5e7c2gHS9NoCEdAryaCNKh+OXV9lChoBkdAcAPevpyIYWgHS+loCEdAryaSNwR5DHV9lChoBkdAcVB0f5k9U2gHS9poCEdArybX6KtPpXV9lChoBkdAcFXguh9LH2gHS8xoCEdArycFFz+3pnV9lChoBkdAcGofW+XZ5GgHS9toCEdArycNf/m1Y3V9lChoBkdAcvIFAE+xGGgHS+FoCEdArycLwYtQK3V9lChoBkdAcan+TvAoHGgHS95oCEdAryduRHPNV3V9lChoBkdAceTfZ26kI2gHS85oCEdAryd68L8aXXV9lChoBkdAcZF3LFGXomgHS8doCEdAryeI33pOe3V9lChoBkdAcRNGcWj46GgHS+toCEdAryeYEdNnG3V9lChoBkdAcgs8Cgbp/2gHS/doCEdAryfhi7TUiXV9lChoBkdAcuOe0G/vfGgHS9xoCEdArygsxbjcVXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 548, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}