Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.88 +/- 17.68
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f957857ae60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f957857aef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f957857af80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f957857b010>", "_build": "<function ActorCriticPolicy._build at 0x7f957857b0a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f957857b130>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f957857b1c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f957857b250>", "_predict": "<function ActorCriticPolicy._predict at 0x7f957857b2e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f957857b370>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f957857b400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f957857b490>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9578576580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683740198978717017, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABEazxjz58++FLZvbAurL7cHhW9+2OSvQAAAAAAAAAAM1s1vRRIvLpkHzo87RWOPJN6YbuV1nY9AACAPwAAgD/NGZm9GpqXP7PEsb7jHQO/iObjvUa0Or4AAAAAAAAAAKADOT4OmV0/2Lk0POr3ur55cCg+2XaNvQAAAAAAAAAAs0iXPUhDlbqiYWayZpVuqcDwxjrPoMQyAACAPwAAAAAmDdk9RCedPxkWmD6DGci+Dq1dPpq6jD0AAAAAAAAAANqpqr326Bk5So2Du579dDvT/3874uUQuwAAAAAAAIA/ZosTvWnqN7yuBIu80sjGPNHNnD1OFKG9AACAPwAAgD/A3BI+DCIbP4goUr6Mks++H97oumTdtbwAAAAAAAAAAM0Ux7tuFcC85rlKPJSZiD2ej1c7DSDxOQAAgD8AAIA/AEYVvvuKuj2iiUU+BgCVvhWMl7y6OZg7AAAAAAAAAAAa53o99mxIuqgac7PmvGGs1+5GO9+WtTMAAIA/AACAP5q/VzwLv5g+rJcpvv0ox75mRoK9DT8BvgAAAAAAAAAA5j0sPuPEID8jmc2+FCnEvhKhSj6SH+6+AAAAAAAAAAAzJly9nHlTPom9or0Oqai+Iq7Nvfo0j70AAAAAAAAAAJtMsr4YXh4/UzPMu4O91b6sq4G+mfAbPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK0xFNL12+MAWyUTS8BjAF0lEdAoTaHFR51NnV9lChoBkdAcxTZxJd0JWgHTSMBaAhHQKE24ob4rSV1fZQoaAZHQHMKwi/wiJRoB0vyaAhHQKE28BdUsFt1fZQoaAZHQHGCg08/2TRoB01BAWgIR0ChNvg4n4O+dX2UKGgGR0BiCgO2AoXsaAdN6ANoCEdAoTcUx9G7SXV9lChoBkdAUxBRvWH1vmgHS9toCEdAoTdYIBzV+nV9lChoBkdAciPlkpZwGWgHTTABaAhHQKE3tar3j+91fZQoaAZHQHCmPNiYsupoB00JAWgIR0ChOCTfaYeDdX2UKGgGR0BwmbW+XZ5BaAdNAwFoCEdAoTkn+ERJ3HV9lChoBkdAcw18s+V1OmgHS+1oCEdAoTlYHVwxWXV9lChoBkdAcjmoWHk92WgHS/toCEdAoTl2Il+mWXV9lChoBkdAckqzuF6Av2gHTSgBaAhHQKE5nt9hJAd1fZQoaAZHQHEj+MAFPi1oB00eAWgIR0ChObYSYgJUdX2UKGgGR0BxVfXVbzK+aAdNHAFoCEdAoTnRyIYWL3V9lChoBkdAcRbMQVbiZWgHTToBaAhHQKE52nDR+jN1fZQoaAZHQHI3Xbuc+aBoB0vcaAhHQKE53gqEvkB1fZQoaAZHQHCd9G3F1jloB00KAWgIR0ChOhyr5qM4dX2UKGgGR0BuMPqC6H0saAdNWQFoCEdAoTpxakhzNnV9lChoBkdAcmEFBY3eemgHTQ4BaAhHQKE6idOIqLF1fZQoaAZHQHC5/3i704BoB0vxaAhHQKE6mrfcesB1fZQoaAZHQHBgk92X9itoB00jAWgIR0ChOrwZwXImdX2UKGgGR0BwdCs8xKxtaAdL/2gIR0ChO6DEehf0dX2UKGgGR0ByFPaIvalDaAdNKQFoCEdAoTu3/3nIQ3V9lChoBkdAb6Gd+5OJtWgHS/JoCEdAoTzE0pEx7HV9lChoBkdAcoDevpyIYWgHS+poCEdAoTzndZaFEnV9lChoBkdAbyWh/RVp9WgHS+RoCEdAoTz0zdk8R3V9lChoBkdAcuzPE87p3WgHTQEBaAhHQKE9LK6Fuel1fZQoaAZHQHBCqCg9NetoB0v5aAhHQKE9QE6kqMF1fZQoaAZHQHJxmNrCWNZoB0v9aAhHQKE9WOjqOcV1fZQoaAZHQHGf0J0GNaRoB03YAWgIR0ChPX0DdP+GdX2UKGgGR0BxPXEETxoaaAdNLwFoCEdAoT2VTWGyonV9lChoBkdAcP3eHBUJfWgHTTsBaAhHQKE9lcHnln11fZQoaAZHQHCxRO58Sf1oB0voaAhHQKE96+RoysV1fZQoaAZHQHHoDNliBoVoB0v/aAhHQKE+FA44p+d1fZQoaAZHQHOvsdLg4wRoB00fAWgIR0ChPlD/lyR0dX2UKGgGR0BwgJ4hUzbfaAdNPQFoCEdAoT5e1ndwenV9lChoBkdAcTCX+2mYSmgHTTEBaAhHQKE+mWqLjxV1fZQoaAZHQHGKmzOX3QFoB0vraAhHQKE+1s6aLGd1fZQoaAZHQHE/ozeoDPpoB0v2aAhHQKE+45uIhyN1fZQoaAZHQFGzte2NNrVoB0u4aAhHQKE/DwrlNlB1fZQoaAZHQDeK6asp5NZoB0vOaAhHQKFJtuiN83N1fZQoaAZHQHJGoAwPAfxoB0viaAhHQKFKPshxHXp1fZQoaAZHQHBPyJfpljFoB00IAWgIR0ChSoggxJumdX2UKGgGR0BwCc1l5GBnaAdNAgFoCEdAoUr1ix3V1HV9lChoBkdAcOxBYmsvI2gHS+hoCEdAoUsedf9gnnV9lChoBkdAbo9Vn27FsGgHTR0BaAhHQKFLfMFEAo51fZQoaAZHQHExHeenQ6ZoB00fAWgIR0ChS4QUxmCidX2UKGgGR0Bwt7ObAk9maAdNAAFoCEdAoUutfG+9J3V9lChoBkdAbu70pVjqfWgHS/VoCEdAoUvLfWMCLnV9lChoBkdAbXbet0V8C2gHTUgBaAhHQKFL2qGUOd51fZQoaAZHQHJXMDGLk0doB0vpaAhHQKFL9+Q2dd51fZQoaAZHQHBhaWLP2PFoB0vdaAhHQKFMGSf16E91fZQoaAZHQHJKLdWQwK1oB01qAWgIR0ChTCEHMUypdX2UKGgGR0Byw1TbWVeKaAdL82gIR0ChTGX18LKFdX2UKGgGR0BwFve40/GEaAdL92gIR0ChTJwco6S1dX2UKGgGR0ByIHMTviLmaAdNUwFoCEdAoUzvzWf9P3V9lChoBkdAcVOAVwgkkmgHS+FoCEdAoU13jyWiUXV9lChoBkdAbc3FsHjZMGgHS/5oCEdAoU2Z1HOKO3V9lChoBkdAcQg8cdYGMWgHTSwBaAhHQKFNplV94NZ1fZQoaAZHQHHxNS/CZWtoB0v+aAhHQKFOOILw4Kh1fZQoaAZHQHIbypiqhlFoB0v1aAhHQKFOPhE0BOp1fZQoaAZHQG69anR9gF5oB0vmaAhHQKFOYkLx7Rh1fZQoaAZHQHJNw9V3ljpoB0v8aAhHQKFO0m4RVZN1fZQoaAZHQG/qxIre67NoB00RAWgIR0ChTvDqW1MNdX2UKGgGR0BvaWAAhje9aAdNBgFoCEdAoU8lfgJkXnV9lChoBkdAcC9NyYG+smgHTREBaAhHQKFPavZAY511fZQoaAZHQHKNABgeA/doB00jAWgIR0ChT3q5sj3VdX2UKGgGR0BxRKi+L3sYaAdL8mgIR0ChT3/a6BiDdX2UKGgGR0BwZk1xbSqmaAdL4mgIR0ChT4s9SuQqdX2UKGgGR0BxMxzfaYeDaAdNJgFoCEdAoU/U1Gb1AnV9lChoBkdAcDioiLVFyGgHTTEBaAhHQKFP7ihnJ1d1fZQoaAZHQHGOlC1JDmdoB0v3aAhHQKFQHSMLncN1fZQoaAZHQHF2y0WuX/poB0v1aAhHQKFQx5LRKHx1fZQoaAZHQHJUrJSzgMtoB00KAWgIR0ChUN961LJ0dX2UKGgGR0BtcbrzGxUvaAdNEQFoCEdAoVEXAmAskXV9lChoBkdAbsIHoHLRr2gHTQMBaAhHQKFRtRLK3d91fZQoaAZHQG64IvrWy1NoB00cAWgIR0ChUePhAGB4dX2UKGgGR0BwlhnGsFMaaAdL9WgIR0ChUfjuKGcndX2UKGgGR0BxPxWeYlY2aAdNJQFoCEdAoVIIU5+6RXV9lChoBkdAcpMos7MgU2gHS+hoCEdAoVIaxHG0eHV9lChoBkdAciIHXEqDsmgHS/toCEdAoVIqoZQ53nV9lChoBkdAchKV6/qPfmgHS9RoCEdAoVI7pmmLtXV9lChoBkdAcPDWOIZZS2gHS+5oCEdAoVJ/eJpFkXV9lChoBkdAb/YDfWMCLmgHS/1oCEdAoVMHqmj0tnV9lChoBkdAcLHsYVIqb2gHTQUBaAhHQKFTQ0/GEPF1fZQoaAZHQHGKyOmzjWFoB0v9aAhHQKFTXseGO+91fZQoaAZHQHGvVOGj9GZoB01MAWgIR0ChU6Kx9oexdX2UKGgGR0Bujgc94eLfaAdNUQFoCEdAoVPDFsHjZXV9lChoBkdAcWZIKMNtqGgHS+5oCEdAoVP1tygf2nV9lChoBkdAcE/pQUHpr2gHS95oCEdAoVP4zDXOGHV9lChoBkdAclPzeXRgJGgHS9loCEdAoVSNUyYXwnV9lChoBkdAcej/y5I6KmgHS9ZoCEdAoVSzf1pTM3V9lChoBkdAS8KEpRXOnmgHS8ZoCEdAoVTCVKPGQ3V9lChoBkdAcb41stTUAmgHTTYBaAhHQKFU3DsMRYl1fZQoaAZHQHABuGfwqiJoB0v1aAhHQKFVNefI0ZZ1fZQoaAZHQHBSBOLzf79oB00FAWgIR0ChVaBKL877dX2UKGgGR0ByJeMqBmPHaAdNEwFoCEdAoVWtopQUH3V9lChoBkdAQtYO8TSLImgHS7hoCEdAoVXLXHzYmXV9lChoBkdAbsO9pyp71WgHS+hoCEdAoVZW8AaNuXV9lChoBkdAcIGmJFb3XmgHTS0BaAhHQKFWelbeMyd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:857922d9e93e234d5b1cecaaed59115b1f72d778d405554d9fa21848ab275ee6
|
3 |
+
size 146691
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f957857ae60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f957857aef0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f957857af80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f957857b010>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f957857b0a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f957857b130>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f957857b1c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f957857b250>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f957857b2e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f957857b370>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f957857b400>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f957857b490>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9578576580>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1683740198978717017,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABEazxjz58++FLZvbAurL7cHhW9+2OSvQAAAAAAAAAAM1s1vRRIvLpkHzo87RWOPJN6YbuV1nY9AACAPwAAgD/NGZm9GpqXP7PEsb7jHQO/iObjvUa0Or4AAAAAAAAAAKADOT4OmV0/2Lk0POr3ur55cCg+2XaNvQAAAAAAAAAAs0iXPUhDlbqiYWayZpVuqcDwxjrPoMQyAACAPwAAAAAmDdk9RCedPxkWmD6DGci+Dq1dPpq6jD0AAAAAAAAAANqpqr326Bk5So2Du579dDvT/3874uUQuwAAAAAAAIA/ZosTvWnqN7yuBIu80sjGPNHNnD1OFKG9AACAPwAAgD/A3BI+DCIbP4goUr6Mks++H97oumTdtbwAAAAAAAAAAM0Ux7tuFcC85rlKPJSZiD2ej1c7DSDxOQAAgD8AAIA/AEYVvvuKuj2iiUU+BgCVvhWMl7y6OZg7AAAAAAAAAAAa53o99mxIuqgac7PmvGGs1+5GO9+WtTMAAIA/AACAP5q/VzwLv5g+rJcpvv0ox75mRoK9DT8BvgAAAAAAAAAA5j0sPuPEID8jmc2+FCnEvhKhSj6SH+6+AAAAAAAAAAAzJly9nHlTPom9or0Oqai+Iq7Nvfo0j70AAAAAAAAAAJtMsr4YXh4/UzPMu4O91b6sq4G+mfAbPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVEgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK0xFNL12+MAWyUTS8BjAF0lEdAoTaHFR51NnV9lChoBkdAcxTZxJd0JWgHTSMBaAhHQKE24ob4rSV1fZQoaAZHQHMKwi/wiJRoB0vyaAhHQKE28BdUsFt1fZQoaAZHQHGCg08/2TRoB01BAWgIR0ChNvg4n4O+dX2UKGgGR0BiCgO2AoXsaAdN6ANoCEdAoTcUx9G7SXV9lChoBkdAUxBRvWH1vmgHS9toCEdAoTdYIBzV+nV9lChoBkdAciPlkpZwGWgHTTABaAhHQKE3tar3j+91fZQoaAZHQHCmPNiYsupoB00JAWgIR0ChOCTfaYeDdX2UKGgGR0BwmbW+XZ5BaAdNAwFoCEdAoTkn+ERJ3HV9lChoBkdAcw18s+V1OmgHS+1oCEdAoTlYHVwxWXV9lChoBkdAcjmoWHk92WgHS/toCEdAoTl2Il+mWXV9lChoBkdAckqzuF6Av2gHTSgBaAhHQKE5nt9hJAd1fZQoaAZHQHEj+MAFPi1oB00eAWgIR0ChObYSYgJUdX2UKGgGR0BxVfXVbzK+aAdNHAFoCEdAoTnRyIYWL3V9lChoBkdAcRbMQVbiZWgHTToBaAhHQKE52nDR+jN1fZQoaAZHQHI3Xbuc+aBoB0vcaAhHQKE53gqEvkB1fZQoaAZHQHCd9G3F1jloB00KAWgIR0ChOhyr5qM4dX2UKGgGR0BuMPqC6H0saAdNWQFoCEdAoTpxakhzNnV9lChoBkdAcmEFBY3eemgHTQ4BaAhHQKE6idOIqLF1fZQoaAZHQHC5/3i704BoB0vxaAhHQKE6mrfcesB1fZQoaAZHQHBgk92X9itoB00jAWgIR0ChOrwZwXImdX2UKGgGR0BwdCs8xKxtaAdL/2gIR0ChO6DEehf0dX2UKGgGR0ByFPaIvalDaAdNKQFoCEdAoTu3/3nIQ3V9lChoBkdAb6Gd+5OJtWgHS/JoCEdAoTzE0pEx7HV9lChoBkdAcoDevpyIYWgHS+poCEdAoTzndZaFEnV9lChoBkdAbyWh/RVp9WgHS+RoCEdAoTz0zdk8R3V9lChoBkdAcuzPE87p3WgHTQEBaAhHQKE9LK6Fuel1fZQoaAZHQHBCqCg9NetoB0v5aAhHQKE9QE6kqMF1fZQoaAZHQHJxmNrCWNZoB0v9aAhHQKE9WOjqOcV1fZQoaAZHQHGf0J0GNaRoB03YAWgIR0ChPX0DdP+GdX2UKGgGR0BxPXEETxoaaAdNLwFoCEdAoT2VTWGyonV9lChoBkdAcP3eHBUJfWgHTTsBaAhHQKE9lcHnln11fZQoaAZHQHCxRO58Sf1oB0voaAhHQKE96+RoysV1fZQoaAZHQHHoDNliBoVoB0v/aAhHQKE+FA44p+d1fZQoaAZHQHOvsdLg4wRoB00fAWgIR0ChPlD/lyR0dX2UKGgGR0BwgJ4hUzbfaAdNPQFoCEdAoT5e1ndwenV9lChoBkdAcTCX+2mYSmgHTTEBaAhHQKE+mWqLjxV1fZQoaAZHQHGKmzOX3QFoB0vraAhHQKE+1s6aLGd1fZQoaAZHQHE/ozeoDPpoB0v2aAhHQKE+45uIhyN1fZQoaAZHQFGzte2NNrVoB0u4aAhHQKE/DwrlNlB1fZQoaAZHQDeK6asp5NZoB0vOaAhHQKFJtuiN83N1fZQoaAZHQHJGoAwPAfxoB0viaAhHQKFKPshxHXp1fZQoaAZHQHBPyJfpljFoB00IAWgIR0ChSoggxJumdX2UKGgGR0BwCc1l5GBnaAdNAgFoCEdAoUr1ix3V1HV9lChoBkdAcOxBYmsvI2gHS+hoCEdAoUsedf9gnnV9lChoBkdAbo9Vn27FsGgHTR0BaAhHQKFLfMFEAo51fZQoaAZHQHExHeenQ6ZoB00fAWgIR0ChS4QUxmCidX2UKGgGR0Bwt7ObAk9maAdNAAFoCEdAoUutfG+9J3V9lChoBkdAbu70pVjqfWgHS/VoCEdAoUvLfWMCLnV9lChoBkdAbXbet0V8C2gHTUgBaAhHQKFL2qGUOd51fZQoaAZHQHJXMDGLk0doB0vpaAhHQKFL9+Q2dd51fZQoaAZHQHBhaWLP2PFoB0vdaAhHQKFMGSf16E91fZQoaAZHQHJKLdWQwK1oB01qAWgIR0ChTCEHMUypdX2UKGgGR0Byw1TbWVeKaAdL82gIR0ChTGX18LKFdX2UKGgGR0BwFve40/GEaAdL92gIR0ChTJwco6S1dX2UKGgGR0ByIHMTviLmaAdNUwFoCEdAoUzvzWf9P3V9lChoBkdAcVOAVwgkkmgHS+FoCEdAoU13jyWiUXV9lChoBkdAbc3FsHjZMGgHS/5oCEdAoU2Z1HOKO3V9lChoBkdAcQg8cdYGMWgHTSwBaAhHQKFNplV94NZ1fZQoaAZHQHHxNS/CZWtoB0v+aAhHQKFOOILw4Kh1fZQoaAZHQHIbypiqhlFoB0v1aAhHQKFOPhE0BOp1fZQoaAZHQG69anR9gF5oB0vmaAhHQKFOYkLx7Rh1fZQoaAZHQHJNw9V3ljpoB0v8aAhHQKFO0m4RVZN1fZQoaAZHQG/qxIre67NoB00RAWgIR0ChTvDqW1MNdX2UKGgGR0BvaWAAhje9aAdNBgFoCEdAoU8lfgJkXnV9lChoBkdAcC9NyYG+smgHTREBaAhHQKFPavZAY511fZQoaAZHQHKNABgeA/doB00jAWgIR0ChT3q5sj3VdX2UKGgGR0BxRKi+L3sYaAdL8mgIR0ChT3/a6BiDdX2UKGgGR0BwZk1xbSqmaAdL4mgIR0ChT4s9SuQqdX2UKGgGR0BxMxzfaYeDaAdNJgFoCEdAoU/U1Gb1AnV9lChoBkdAcDioiLVFyGgHTTEBaAhHQKFP7ihnJ1d1fZQoaAZHQHGOlC1JDmdoB0v3aAhHQKFQHSMLncN1fZQoaAZHQHF2y0WuX/poB0v1aAhHQKFQx5LRKHx1fZQoaAZHQHJUrJSzgMtoB00KAWgIR0ChUN961LJ0dX2UKGgGR0BtcbrzGxUvaAdNEQFoCEdAoVEXAmAskXV9lChoBkdAbsIHoHLRr2gHTQMBaAhHQKFRtRLK3d91fZQoaAZHQG64IvrWy1NoB00cAWgIR0ChUePhAGB4dX2UKGgGR0BwlhnGsFMaaAdL9WgIR0ChUfjuKGcndX2UKGgGR0BxPxWeYlY2aAdNJQFoCEdAoVIIU5+6RXV9lChoBkdAcpMos7MgU2gHS+hoCEdAoVIaxHG0eHV9lChoBkdAciIHXEqDsmgHS/toCEdAoVIqoZQ53nV9lChoBkdAchKV6/qPfmgHS9RoCEdAoVI7pmmLtXV9lChoBkdAcPDWOIZZS2gHS+5oCEdAoVJ/eJpFkXV9lChoBkdAb/YDfWMCLmgHS/1oCEdAoVMHqmj0tnV9lChoBkdAcLHsYVIqb2gHTQUBaAhHQKFTQ0/GEPF1fZQoaAZHQHGKyOmzjWFoB0v9aAhHQKFTXseGO+91fZQoaAZHQHGvVOGj9GZoB01MAWgIR0ChU6Kx9oexdX2UKGgGR0Bujgc94eLfaAdNUQFoCEdAoVPDFsHjZXV9lChoBkdAcWZIKMNtqGgHS+5oCEdAoVP1tygf2nV9lChoBkdAcE/pQUHpr2gHS95oCEdAoVP4zDXOGHV9lChoBkdAclPzeXRgJGgHS9loCEdAoVSNUyYXwnV9lChoBkdAcej/y5I6KmgHS9ZoCEdAoVSzf1pTM3V9lChoBkdAS8KEpRXOnmgHS8ZoCEdAoVTCVKPGQ3V9lChoBkdAcb41stTUAmgHTTYBaAhHQKFU3DsMRYl1fZQoaAZHQHABuGfwqiJoB0v1aAhHQKFVNefI0ZZ1fZQoaAZHQHBSBOLzf79oB00FAWgIR0ChVaBKL877dX2UKGgGR0ByJeMqBmPHaAdNEwFoCEdAoVWtopQUH3V9lChoBkdAQtYO8TSLImgHS7hoCEdAoVXLXHzYmXV9lChoBkdAbsO9pyp71WgHS+hoCEdAoVZW8AaNuXV9lChoBkdAcIGmJFb3XmgHTS0BaAhHQKFWelbeMyd1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 300,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:956b352594a8fbe01ff4154231e699ef68ac2c081c28201d7c72ebf3a26199fd
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f54455cfdbf24b78cdb82addd954b851a95ae5d9e73e4cd5e5eb8fc0b605b7c9
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (166 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.8825034012435, "std_reward": 17.67862914747576, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-10T18:03:42.826442"}
|