|
--- |
|
license: apache-2.0 |
|
tags: |
|
- merge |
|
- mergekit |
|
- epfl-llm/meditron-70b |
|
- allenai/tulu-2-dpo-70b |
|
--- |
|
|
|
# Medmerge-tulu-70b |
|
|
|
Medmerge-tulu-70b is a merge of the following models: |
|
* [wanglab/ClinicalCamel-70B](https://huggingface.co/wanglab/ClinicalCamel-70B) |
|
* [epfl-llm/meditron-70b](https://huggingface.co/epfl-llm/meditron-70b) |
|
* [allenai/tulu-2-dpo-70b](https://huggingface.co/allenai/tulu-2-dpo-70b) |
|
|
|
# Open LLM Leaderboard |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63486df1f8f01fcc4b23e97d/ajm6Z9cCmd74ERdz4xdHs.png) |
|
|
|
| Model Name | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |
|
| -------------------- | -------- | --------- | ------ | ---------- | ---------- | -------- | |
|
| tulu-2-dpo-70b | 72.1 | 88.99 | 69.84 | 65.78 | 83.27 | 62.62 | |
|
| Medmerge-tulu-70b | 67.81 | 87.46 | 70.1 | 47.89 | 83.43 | 56.56 | |
|
|
|
## Performance |
|
|
|
Clinical Camel demonstrates competitive performance on medical benchmarks. |
|
|
|
**Table: Five-Shot Performance of Clinical Camel-70B (C70), GPT3.5, GPT4, and Med-PaLM 2 on Various Medical Datasets** |
|
|
|
| Dataset | Medmerge-tulu-70b | ClinicalCamel-70B | GPT3.5 | GPT4 | Med-PaLM 2 | |
|
|-----------------------------|-------------------|-------------------|--------|-------|--------------| |
|
| MMLU Anatomy | 66.6 | 65.2 | 60.7 | 80.0 | 77.8 | |
|
| MMLU Clinical Knowledge | 72.0 | 72.8 | 68.7 | 86.4 | 88.3 | |
|
| MMLU College Biology | 84.7 | 81.2 | 72.9 | 93.8 | 94.4 | |
|
| MMLU College Medicine | 64.2 | 68.2 | 63.6 | 76.3 | 80.9 | |
|
| MMLU Medical Genetics | 76.0 | 69.0 | 68.0 | 92.0 | 90.0 | |
|
| MMLU Professional Medicine | 75.7 | 75.0 | 69.8 | 93.8 | 95.2 | |
|
| MedMCQA | | 54.2 | 51.0 | 72.4 | 71.3 | |
|
| MedQA (USMLE) | | 60.7 | 53.6 | 81.4 | 79.7 | |
|
| PubMedQA | | 77.9 | 60.2 | 74.4 | 79.2 | |
|
| USMLE Sample Exam | | 64.3 | 58.5 | 86.6 | - | |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: NousResearch/Llama-2-70b-hf |
|
# no parameters necessary for base model |
|
- model: wanglab/ClinicalCamel-70B |
|
parameters: |
|
weight: 0.08 |
|
density: 0.45 |
|
- model: epfl-llm/meditron-70b |
|
parameters: |
|
weight: 0.08 |
|
density: 0.45 |
|
- model: allenai/tulu-2-dpo-70b |
|
parameters: |
|
weight: 0.08 |
|
density: 0.45 |
|
merge_method: dare_ties |
|
base_model: NousResearch/Llama-2-70b-hf |
|
parameters: |
|
int8_mask: true |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Technoculture/Medmerge-tulu-70b" |
|
messages = [{"role": "user", "content": "I am feeling sleepy these days"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |