TechxGenus commited on
Commit
7afaec0
1 Parent(s): d7aa001

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: true
4
+ widget:
5
+ - text: 'def print_hello_world():'
6
+ example_title: Hello world
7
+ group: Python
8
+ datasets:
9
+ - bigcode/the-stack-v2-train
10
+ license: bigcode-openrail-m
11
+ library_name: transformers
12
+ tags:
13
+ - code
14
+ model-index:
15
+ - name: starcoder2-3b
16
+ results:
17
+ - task:
18
+ type: text-generation
19
+ dataset:
20
+ name: CruxEval-I
21
+ type: cruxeval-i
22
+ metrics:
23
+ - type: pass@1
24
+ value: 32.7
25
+ - task:
26
+ type: text-generation
27
+ dataset:
28
+ name: DS-1000
29
+ type: ds-1000
30
+ metrics:
31
+ - type: pass@1
32
+ value: 25.0
33
+ - task:
34
+ type: text-generation
35
+ dataset:
36
+ name: GSM8K (PAL)
37
+ type: gsm8k-pal
38
+ metrics:
39
+ - type: accuracy
40
+ value: 27.7
41
+ - task:
42
+ type: text-generation
43
+ dataset:
44
+ name: HumanEval+
45
+ type: humanevalplus
46
+ metrics:
47
+ - type: pass@1
48
+ value: 27.4
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: HumanEval
53
+ type: humaneval
54
+ metrics:
55
+ - type: pass@1
56
+ value: 31.7
57
+ - task:
58
+ type: text-generation
59
+ dataset:
60
+ name: RepoBench-v1.1
61
+ type: repobench-v1.1
62
+ metrics:
63
+ - type: edit-smiliarity
64
+ value: 71.19
65
+ ---
66
+
67
+ AWQ quantized version of starcoder2-3b model.
68
+
69
+ ---
70
+
71
+ # StarCoder2
72
+
73
+ <center>
74
+ <img src="https://huggingface.co/datasets/bigcode/admin_private/resolve/main/starcoder2_banner.png" alt="SC2" width="900" height="600">
75
+ </center>
76
+
77
+ ## Table of Contents
78
+
79
+ 1. [Model Summary](##model-summary)
80
+ 2. [Use](##use)
81
+ 3. [Limitations](##limitations)
82
+ 4. [Training](##training)
83
+ 5. [License](##license)
84
+ 6. [Citation](##citation)
85
+
86
+ ## Model Summary
87
+
88
+ StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from [The Stack v2](https://huggingface.co/datasets/bigcode/the-stack-v2-train), with opt-out requests excluded. The model uses [Grouped Query Attention](https://arxiv.org/abs/2305.13245), [a context window of 16,384 tokens](https://arxiv.org/abs/2205.14135) with [a sliding window attention of 4,096 tokens](https://arxiv.org/abs/2004.05150v2), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 3+ trillion tokens.
89
+
90
+ - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
91
+ - **Paper:** [Link](https://drive.google.com/file/d/17iGn3c-sYNiLyRSY-A85QOzgzGnGiVI3/view?usp=sharing)
92
+ - **Point of Contact:** [[email protected]](mailto:[email protected])
93
+ - **Languages:** 17 Programming languages
94
+
95
+ ## Use
96
+
97
+ ### Intended use
98
+
99
+ The model was trained on GitHub code as well as additional selected data sources such as Arxiv and Wikipedia. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well.
100
+
101
+ ### Generation
102
+ Here are some examples to get started with the model. You can find a script for fine-tuning in StarCoder2's [GitHub repository](https://github.com/bigcode-project/starcoder2).
103
+
104
+ First, make sure to install `transformers` from source:
105
+ ```bash
106
+ pip install git+https://github.com/huggingface/transformers.git
107
+ ```
108
+
109
+ #### Running the model on CPU/GPU/multi GPU
110
+ * _Using full precision_
111
+ ```python
112
+ # pip install git+https://github.com/huggingface/transformers.git # TODO: merge PR to main
113
+ from transformers import AutoModelForCausalLM, AutoTokenizer
114
+
115
+ checkpoint = "bigcode/starcoder2-3b"
116
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
117
+
118
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
119
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
120
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
121
+
122
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
123
+ outputs = model.generate(inputs)
124
+ print(tokenizer.decode(outputs[0]))
125
+ ```
126
+ ```bash
127
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
128
+ Memory footprint: 12624.81 MB
129
+ ```
130
+ * _Using `torch.bfloat16`_
131
+ ```python
132
+ # pip install accelerate
133
+ import torch
134
+ from transformers import AutoTokenizer, AutoModelForCausalLM
135
+
136
+ checkpoint = "bigcode/starcoder2-3b"
137
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
138
+
139
+ # for fp16 use `torch_dtype=torch.float16` instead
140
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
141
+
142
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
143
+ outputs = model.generate(inputs)
144
+ print(tokenizer.decode(outputs[0]))
145
+ ```
146
+ ```bash
147
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
148
+ Memory footprint: 6312.41 MB
149
+ ```
150
+
151
+ #### Quantized Versions through `bitsandbytes`
152
+ * _Using 8-bit precision (int8)_
153
+
154
+ ```python
155
+ # pip install bitsandbytes accelerate
156
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
157
+
158
+ # to use 4bit use `load_in_4bit=True` instead
159
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
160
+
161
+ checkpoint = "bigcode/starcoder2-3b"
162
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
163
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config)
164
+
165
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
166
+ outputs = model.generate(inputs)
167
+ print(tokenizer.decode(outputs[0]))
168
+ ```
169
+ ```bash
170
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
171
+ # load_in_8bit
172
+ Memory footprint: 3434.07 MB
173
+ # load_in_4bit
174
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
175
+ Memory footprint: 1994.90 MB
176
+ ```
177
+ ### Attribution & Other Requirements
178
+
179
+ The pretraining dataset of the model was filtered for permissive licenses and code with no license only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/search-v2) that lets you search through the pretraining data to identify where the generated code came from, and apply the proper attribution to your code.
180
+
181
+ # Limitations
182
+
183
+ The model has been trained on source code from 600+ programming languages. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://drive.google.com/file/d/17iGn3c-sYNiLyRSY-A85QOzgzGnGiVI3/view?usp=sharing) for an in-depth discussion of the model limitations.
184
+
185
+ # Training
186
+
187
+ ## Model
188
+
189
+ - **Architecture:** Transformer decoder with grouped-query and sliding window attention and Fill-in-the-Middle objective
190
+ - **Pretraining steps:** 1.2 million
191
+ - **Pretraining tokens:** 3+ trillion
192
+ - **Precision:** bfloat16
193
+
194
+ ## Hardware
195
+
196
+ - **GPUs:** 160 A100
197
+
198
+ ## Software
199
+
200
+ - **Framework:** TODO
201
+ - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
202
+
203
+ # License
204
+
205
+ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
206
+
207
+ # Citation
208
+
209
+ _Coming soon_
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bigcode/starcoder2-3b",
3
+ "architectures": [
4
+ "Starcoder2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 0,
8
+ "embedding_dropout": 0.0,
9
+ "eos_token_id": 0,
10
+ "hidden_act": "gelu_pytorch_tanh",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.018042,
13
+ "intermediate_size": 12288,
14
+ "max_position_embeddings": 16384,
15
+ "mlp_type": "default",
16
+ "model_type": "starcoder2",
17
+ "norm_epsilon": 1e-05,
18
+ "norm_type": "layer_norm",
19
+ "num_attention_heads": 24,
20
+ "num_hidden_layers": 30,
21
+ "num_key_value_heads": 2,
22
+ "quantization_config": {
23
+ "bits": 4,
24
+ "group_size": 128,
25
+ "modules_to_not_convert": null,
26
+ "quant_method": "awq",
27
+ "version": "gemm",
28
+ "zero_point": true
29
+ },
30
+ "residual_dropout": 0.0,
31
+ "rope_theta": 999999.4420358813,
32
+ "sliding_window": 4096,
33
+ "torch_dtype": "float16",
34
+ "transformers_version": "4.39.3",
35
+ "use_bias": true,
36
+ "use_cache": true,
37
+ "vocab_size": 49152
38
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "do_sample": true,
5
+ "eos_token_id": 0,
6
+ "transformers_version": "4.39.3"
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd01a2ec33a7d5bf5a34e8876934d1aae2b1f8b2a42e26583d9fb1a04924cac9
3
+ size 2102272504
special_tokens_map.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<fim_prefix>",
5
+ "<fim_middle>",
6
+ "<fim_suffix>",
7
+ "<fim_pad>",
8
+ "<repo_name>",
9
+ "<file_sep>",
10
+ "<issue_start>",
11
+ "<issue_comment>",
12
+ "<issue_closed>",
13
+ "<jupyter_start>",
14
+ "<jupyter_text>",
15
+ "<jupyter_code>",
16
+ "<jupyter_output>",
17
+ "<jupyter_script>",
18
+ "<empty_output>",
19
+ "<code_to_intermediate>",
20
+ "<intermediate_to_code>",
21
+ "<pr>",
22
+ "<pr_status>",
23
+ "<pr_is_merged>",
24
+ "<pr_base>",
25
+ "<pr_file>",
26
+ "<pr_base_code>",
27
+ "<pr_diff>",
28
+ "<pr_diff_hunk>",
29
+ "<pr_comment>",
30
+ "<pr_event_id>",
31
+ "<pr_review>",
32
+ "<pr_review_state>",
33
+ "<pr_review_comment>",
34
+ "<pr_in_reply_to_review_id>",
35
+ "<pr_in_reply_to_comment_id>",
36
+ "<pr_diff_hunk_comment_line>",
37
+ "<NAME>",
38
+ "<EMAIL>",
39
+ "<KEY>",
40
+ "<PASSWORD>"
41
+ ],
42
+ "bos_token": {
43
+ "content": "<|endoftext|>",
44
+ "lstrip": false,
45
+ "normalized": false,
46
+ "rstrip": false,
47
+ "single_word": false
48
+ },
49
+ "eos_token": {
50
+ "content": "<|endoftext|>",
51
+ "lstrip": false,
52
+ "normalized": false,
53
+ "rstrip": false,
54
+ "single_word": false
55
+ },
56
+ "unk_token": {
57
+ "content": "<|endoftext|>",
58
+ "lstrip": false,
59
+ "normalized": false,
60
+ "rstrip": false,
61
+ "single_word": false
62
+ }
63
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<fim_prefix>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<fim_middle>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<fim_suffix>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<fim_pad>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": "<repo_name>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": "<file_sep>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": "<issue_start>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": "<issue_comment>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": "<issue_closed>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": "<jupyter_start>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<jupyter_text>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "12": {
101
+ "content": "<jupyter_code>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "13": {
109
+ "content": "<jupyter_output>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "14": {
117
+ "content": "<jupyter_script>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "15": {
125
+ "content": "<empty_output>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "16": {
133
+ "content": "<code_to_intermediate>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "17": {
141
+ "content": "<intermediate_to_code>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "18": {
149
+ "content": "<pr>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "19": {
157
+ "content": "<pr_status>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "20": {
165
+ "content": "<pr_is_merged>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "21": {
173
+ "content": "<pr_base>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "22": {
181
+ "content": "<pr_file>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "23": {
189
+ "content": "<pr_base_code>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "24": {
197
+ "content": "<pr_diff>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "25": {
205
+ "content": "<pr_diff_hunk>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "26": {
213
+ "content": "<pr_comment>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "27": {
221
+ "content": "<pr_event_id>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "28": {
229
+ "content": "<pr_review>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "29": {
237
+ "content": "<pr_review_state>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "30": {
245
+ "content": "<pr_review_comment>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "31": {
253
+ "content": "<pr_in_reply_to_review_id>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "32": {
261
+ "content": "<pr_in_reply_to_comment_id>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "33": {
269
+ "content": "<pr_diff_hunk_comment_line>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "34": {
277
+ "content": "<NAME>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "35": {
285
+ "content": "<EMAIL>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "36": {
293
+ "content": "<KEY>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "37": {
301
+ "content": "<PASSWORD>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ }
308
+ },
309
+ "additional_special_tokens": [
310
+ "<|endoftext|>",
311
+ "<fim_prefix>",
312
+ "<fim_middle>",
313
+ "<fim_suffix>",
314
+ "<fim_pad>",
315
+ "<repo_name>",
316
+ "<file_sep>",
317
+ "<issue_start>",
318
+ "<issue_comment>",
319
+ "<issue_closed>",
320
+ "<jupyter_start>",
321
+ "<jupyter_text>",
322
+ "<jupyter_code>",
323
+ "<jupyter_output>",
324
+ "<jupyter_script>",
325
+ "<empty_output>",
326
+ "<code_to_intermediate>",
327
+ "<intermediate_to_code>",
328
+ "<pr>",
329
+ "<pr_status>",
330
+ "<pr_is_merged>",
331
+ "<pr_base>",
332
+ "<pr_file>",
333
+ "<pr_base_code>",
334
+ "<pr_diff>",
335
+ "<pr_diff_hunk>",
336
+ "<pr_comment>",
337
+ "<pr_event_id>",
338
+ "<pr_review>",
339
+ "<pr_review_state>",
340
+ "<pr_review_comment>",
341
+ "<pr_in_reply_to_review_id>",
342
+ "<pr_in_reply_to_comment_id>",
343
+ "<pr_diff_hunk_comment_line>",
344
+ "<NAME>",
345
+ "<EMAIL>",
346
+ "<KEY>",
347
+ "<PASSWORD>"
348
+ ],
349
+ "bos_token": "<|endoftext|>",
350
+ "clean_up_tokenization_spaces": true,
351
+ "eos_token": "<|endoftext|>",
352
+ "model_max_length": 1000000000000000019884624838656,
353
+ "tokenizer_class": "GPT2Tokenizer",
354
+ "unk_token": "<|endoftext|>",
355
+ "vocab_size": 49152
356
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff