File size: 6,053 Bytes
df558f0
bc4df66
df558f0
 
d91bf04
 
df558f0
 
 
 
 
 
 
 
 
 
bc4df66
df558f0
d91bf04
 
 
 
 
df558f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d91bf04
df558f0
 
d91bf04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df558f0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
base_model: TeeA/T5-Text2SQL-Bilingual
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: Text2SQL-Bilingual
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Text2SQL-Bilingual

This model is a fine-tuned version of [TeeA/T5-Text2SQL-Bilingual](https://huggingface.co/TeeA/T5-Text2SQL-Bilingual) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0018
- Rouge1: 0.8820
- Rouge2: 0.8188
- Rougel: 0.8750
- Rougelsum: 0.8750

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|
| 1.3182        | 1.0   | 4389   | 1.2317          | 0.8648 | 0.7817 | 0.8552 | 0.8551    |
| 1.2945        | 2.0   | 8778   | 1.2231          | 0.8647 | 0.7827 | 0.8562 | 0.8566    |
| 1.2952        | 3.0   | 13167  | 1.2126          | 0.8680 | 0.7884 | 0.8590 | 0.8589    |
| 1.2712        | 4.0   | 17556  | 1.1972          | 0.8651 | 0.7855 | 0.8566 | 0.8566    |
| 1.2547        | 5.0   | 21945  | 1.1891          | 0.8703 | 0.7916 | 0.8608 | 0.8611    |
| 1.2414        | 6.0   | 26334  | 1.1771          | 0.8709 | 0.7942 | 0.8621 | 0.8618    |
| 1.2111        | 7.0   | 30723  | 1.1675          | 0.8719 | 0.7964 | 0.8640 | 0.8641    |
| 1.2218        | 8.0   | 35112  | 1.1567          | 0.8699 | 0.7932 | 0.8620 | 0.8619    |
| 1.2086        | 9.0   | 39501  | 1.1489          | 0.8739 | 0.7999 | 0.8655 | 0.8654    |
| 1.1895        | 10.0  | 43890  | 1.1390          | 0.8724 | 0.7992 | 0.8657 | 0.8655    |
| 1.1916        | 11.0  | 48279  | 1.1305          | 0.8757 | 0.8012 | 0.8679 | 0.8678    |
| 1.1837        | 12.0  | 52668  | 1.1208          | 0.8750 | 0.8025 | 0.8677 | 0.8673    |
| 1.169         | 13.0  | 57057  | 1.1146          | 0.8774 | 0.8069 | 0.8705 | 0.8702    |
| 1.1581        | 14.0  | 61446  | 1.1097          | 0.8772 | 0.8075 | 0.8705 | 0.8702    |
| 1.1552        | 15.0  | 65835  | 1.1028          | 0.8769 | 0.8062 | 0.8698 | 0.8697    |
| 1.1628        | 16.0  | 70224  | 1.0941          | 0.8765 | 0.8051 | 0.8692 | 0.8695    |
| 1.1429        | 17.0  | 74613  | 1.0869          | 0.8780 | 0.8077 | 0.8705 | 0.8707    |
| 1.1403        | 18.0  | 79002  | 1.0827          | 0.8786 | 0.8107 | 0.8715 | 0.8715    |
| 1.114         | 19.0  | 83391  | 1.0781          | 0.8796 | 0.8101 | 0.8714 | 0.8716    |
| 1.1131        | 20.0  | 87780  | 1.0738          | 0.8797 | 0.8116 | 0.8720 | 0.8723    |
| 1.1205        | 21.0  | 92169  | 1.0679          | 0.8791 | 0.8110 | 0.8718 | 0.8719    |
| 1.1089        | 22.0  | 96558  | 1.0647          | 0.8781 | 0.8105 | 0.8702 | 0.8706    |
| 1.0958        | 23.0  | 100947 | 1.0583          | 0.8776 | 0.8095 | 0.8706 | 0.8707    |
| 1.0923        | 24.0  | 105336 | 1.0546          | 0.8803 | 0.8130 | 0.8729 | 0.8730    |
| 1.0974        | 25.0  | 109725 | 1.0491          | 0.8786 | 0.8104 | 0.8718 | 0.8719    |
| 1.0942        | 26.0  | 114114 | 1.0465          | 0.8819 | 0.8168 | 0.8755 | 0.8753    |
| 1.0719        | 27.0  | 118503 | 1.0434          | 0.8789 | 0.8122 | 0.8715 | 0.8714    |
| 1.0786        | 28.0  | 122892 | 1.0397          | 0.8795 | 0.8134 | 0.8721 | 0.8723    |
| 1.0789        | 29.0  | 127281 | 1.0368          | 0.8791 | 0.8124 | 0.8717 | 0.8718    |
| 1.0567        | 30.0  | 131670 | 1.0331          | 0.8815 | 0.8165 | 0.8752 | 0.8753    |
| 1.0708        | 31.0  | 136059 | 1.0298          | 0.8793 | 0.8143 | 0.8728 | 0.8727    |
| 1.0601        | 32.0  | 140448 | 1.0249          | 0.8794 | 0.8148 | 0.8731 | 0.8731    |
| 1.0573        | 33.0  | 144837 | 1.0247          | 0.8790 | 0.8159 | 0.8729 | 0.8729    |
| 1.0586        | 34.0  | 149226 | 1.0202          | 0.8783 | 0.8143 | 0.8720 | 0.8719    |
| 1.0569        | 35.0  | 153615 | 1.0179          | 0.8807 | 0.8172 | 0.8738 | 0.8737    |
| 1.0591        | 36.0  | 158004 | 1.0168          | 0.8803 | 0.8156 | 0.8733 | 0.8734    |
| 1.0579        | 37.0  | 162393 | 1.0153          | 0.8808 | 0.8170 | 0.8741 | 0.8738    |
| 1.0401        | 38.0  | 166782 | 1.0129          | 0.8801 | 0.8170 | 0.8736 | 0.8736    |
| 1.0316        | 39.0  | 171171 | 1.0110          | 0.8802 | 0.8166 | 0.8733 | 0.8733    |
| 1.0264        | 40.0  | 175560 | 1.0091          | 0.8814 | 0.8181 | 0.8744 | 0.8744    |
| 1.051         | 41.0  | 179949 | 1.0066          | 0.8801 | 0.8174 | 0.8733 | 0.8731    |
| 1.0365        | 42.0  | 184338 | 1.0059          | 0.8823 | 0.8196 | 0.8754 | 0.8753    |
| 1.054         | 43.0  | 188727 | 1.0049          | 0.8805 | 0.8169 | 0.8734 | 0.8735    |
| 1.0287        | 44.0  | 193116 | 1.0051          | 0.8839 | 0.8216 | 0.8769 | 0.8769    |
| 1.0293        | 45.0  | 197505 | 1.0040          | 0.8837 | 0.8209 | 0.8769 | 0.8770    |
| 1.0315        | 46.0  | 201894 | 1.0025          | 0.8820 | 0.8184 | 0.8751 | 0.8751    |
| 1.0362        | 47.0  | 206283 | 1.0022          | 0.8820 | 0.8191 | 0.8754 | 0.8754    |
| 1.0291        | 48.0  | 210672 | 1.0015          | 0.8824 | 0.8192 | 0.8751 | 0.8752    |
| 1.0246        | 49.0  | 215061 | 1.0019          | 0.8821 | 0.8192 | 0.8752 | 0.8753    |
| 1.0355        | 50.0  | 219450 | 1.0018          | 0.8820 | 0.8188 | 0.8750 | 0.8750    |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2