liusx14
commited on
Commit
•
ab88734
1
Parent(s):
822d7e5
upload
Browse files- README.md +150 -3
- config.json +43 -0
- configuration_telechat.py +93 -0
- generation_config.json +14 -0
- generation_utils.py +162 -0
- modeling_telechat.py +910 -0
- pytorch_model.bin.index.json +1 -0
- special_tokens_map.json +30 -0
- tokenization_telechat.py +220 -0
- tokenizer.model +3 -0
- tokenizer_config.json +40 -0
README.md
CHANGED
@@ -1,3 +1,150 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
<h1>
|
3 |
+
星辰语义大模型-TeleChat
|
4 |
+
</h1>
|
5 |
+
</div>
|
6 |
+
|
7 |
+
<p align="center">
|
8 |
+
🤗 <a href="https://huggingface.co/Tele-AI" target="_blank">Hugging Face</a> • 🏔 <a href="" target="_blank">MindSpore</a>️ • 🦉 <a href="https://github.com/Tele-AI/Telechat" target="_blank">github</a>️ • 🐾 <a href="https://gitee.com/Tele-AI/tele-chat" target="_blank">gitee</a>️ • 💬 <a href="https://github.com/Tele-AI/Telechat/blob/master/images/wechat.jpg" target="_blank">WeChat</a>
|
9 |
+
</p>
|
10 |
+
|
11 |
+
<p align="center">
|
12 |
+
<a href="https://arxiv.org/abs/2401.03804" target="_blank"> Tech Report </a>
|
13 |
+
</p>
|
14 |
+
|
15 |
+
|
16 |
+
# 最新动态
|
17 |
+
- 2024.5.17 开源12B-v2版本chat模型及量化版本
|
18 |
+
- 2024.3.20 开源12B版本chat模型及量化版本
|
19 |
+
- 2024.1.11 开源1T中文数据集
|
20 |
+
- 2024.1.10 开源7B版本chat模型及其量化版本
|
21 |
+
|
22 |
+
# 模型介绍
|
23 |
+
### 星辰语义大模型-TeleChat
|
24 |
+
- 星辰语义大模型TeleChat是由中电信人工智能科技有限公司研发训练的大语言模型,其中7B模型基座采用1.5万亿 Tokens中英文高质量语料进行训练,12B模型基座采用3万亿 Tokens中英文高质量语料进行训练。
|
25 |
+
- 我们开源了对话模型**TeleChat-7B-bot**与**TeleChat-12B-bot**,以及其`huggingface`格式的权重文件。此外,我们还开源了7B、12B模型的int8和int4量化版本。
|
26 |
+
- **TeleChat-12B-bot**在模型结构、训练数据、训练方法等方面进行了改进,在通用问答和知识类、代码类、数学类榜单上相比**TeleChat-7B-bot**均有大幅提升。
|
27 |
+
- 在模型结构方面,我们使用小规模的模型尝试多种模型结构的组合,选择最优结构。相比**TeleChat-7B-bot**模型,**TeleChat-12B-bot**模型采用了词嵌入层与输出层解耦的结构,将词嵌入层和输出lm head层参数分开,有助于增强训练稳定性和收敛性。
|
28 |
+
- 在训练数据方面,我们收集了覆盖书籍、百科、新闻、政务、法律、医药、专利、论文、数学、代码等诸多方面的大量中英文数据;通过优化数据清洗策略大幅提升数据的文本干净度、观点无偏性、内容有效性、格式规范性。
|
29 |
+
- 在训练方法方面,我们使用科学数据配比学习与课程学习的方法,使用小参数模型在多种数据配比的数据上拟合,得到对各个数据集难度的先验估计;训练过程中每隔一段时间自动化评估当前模型在所有数据集上的loss,以及在评测集上的生成效果,动态提升较难学习的数据集权重,保证模型在各个数据集上都有较佳的拟合效果。
|
30 |
+
|
31 |
+
### 模型结构
|
32 |
+
|
33 |
+
我们采用标准的 `Decoder-only` 结构设计了 **TeleChat** 模型,并在模型维度做了如下的一些改进:
|
34 |
+
|
35 |
+
- **位置编码**:我们使用 [Rotary Embedding](https://arxiv.org/pdf/2104.09864.pdf) 的位置编码方法,该方法将相对位置信息依赖集成到 self-attention 中,并且具有较好的位置外推性。Rotary Embedding还可以较好地与Flash-Attention v2 配合使用,将模型的训练速度提升约20%。
|
36 |
+
- **激活函数**:我们使用 [SwiGLU](https://arxiv.org/pdf/2002.05202.pdf) 激活函数来替代GELU激活函数 , 为了减少计算量,将`ffn_hidden_size`设置为小于原始SwiGLU中的4倍隐藏层大小。
|
37 |
+
- **层标准化**: 基于 [RMSNorm](https://arxiv.org/abs/1910.07467) 的 Pre-Normalization。
|
38 |
+
- **词嵌入层与输出层解耦**:我们将**TeleChat-12B-bot**的词嵌入层和输出lm head层参数分开,有助于增强训练稳定性和收敛性。
|
39 |
+
|
40 |
+
|
41 |
+
| | layer_num | hidden_size | ffn_hidden_size | head_num | tie_word_embeddings |
|
42 |
+
|-----| --------- | ----------- | --------------- | -------- | ----------------------- |
|
43 |
+
| 7B | 30 | 4096 | 12288 | 32 | 是 |
|
44 |
+
| 12B | 38 | 5120 | 12288 | 32 | 否 |
|
45 |
+
|
46 |
+
---
|
47 |
+
|
48 |
+
我们开源的TeleChat模型:
|
49 |
+
- 支持deepspeed微调,开源了基于deepspeed的训练代码,支持Zero并行显存优化,同时集成了FlashAttention2
|
50 |
+
- 多轮能力支持。开源了多轮数据构建方式,针对多轮模型训练集成了针对多轮的mask loss训练方式,更好的聚焦多轮答案,提升问答效果。
|
51 |
+
- 外推能力提升。开源了8K训练版本模型,采用NTK-aware外推和attention scaling外推方式,可以外推到96K。
|
52 |
+
- 具备较好的长文生成能力。在工作总结、工作计划、PPT大纲、申论、招标书、邮件、方案、周报、JD写作等长文写作任务上表现较好。
|
53 |
+
|
54 |
+
|
55 |
+
本次发布版本和下载链接见下表
|
56 |
+
|
57 |
+
| 模型版本 | huggingface下载链接 |modelscope下载链接|
|
58 |
+
|----------|-----------------------------------------------------------------------|------------------------------------|
|
59 |
+
| 7B-FP16 | [TeleChat-7B-FP16-hf](https://huggingface.co/Tele-AI/Telechat-7B) |[TeleChat-7B-FP16-ms](https://modelscope.cn/models/TeleAI/telechat-7B) |
|
60 |
+
| 7B-int8 | [TeleChat-7B-int8-hf](https://huggingface.co/Tele-AI/Telechat-7B-int8)|[TeleChat-7B-int8-ms](https://modelscope.cn/models/TeleAI/telechat-7B-int8) |
|
61 |
+
| 7B-int4 | [TeleChat-7B-int4-hf](https://huggingface.co/Tele-AI/Telechat-7B-int4)|[TeleChat-7B-int4-ms](https://modelscope.cn/models/TeleAI/telechat-7B-int4) |
|
62 |
+
| 12B-FP16 | [TeleChat-12B-FP16-hf](https://huggingface.co/Tele-AI/TeleChat-12B)|[TeleChat-12B-FP16-ms](https://modelscope.cn/models/TeleAI/TeleChat-12B) |
|
63 |
+
| 12B-int8 | [TeleChat-12B-int8-hf](https://huggingface.co/Tele-AI/TeleChat-12B-int8)|[TeleChat-12B-int8-ms](https://modelscope.cn/models/TeleAI/TeleChat-12B-int8) |
|
64 |
+
| 12B-int4 | [TeleChat-12B-int4-hf](https://huggingface.co/Tele-AI/TeleChat-12B-int4)|[TeleChat-12B-int4-ms](https://modelscope.cn/models/TeleAI/TeleChat-12B-int4) |
|
65 |
+
|
66 |
+
**镜像下载**
|
67 |
+
为了便于大家快速上手,我们提供了可运行的环境镜像,下载地址:[镜像下载](https://cloud.189.cn/web/share?code=vQFJRf7JBfmq) (访问码:ona6)
|
68 |
+
|
69 |
+
# 数据开源
|
70 |
+
### 数据介绍
|
71 |
+
TeleChat-PTD 是由电信星辰大模型**TeleChat**预训练语料中抽取出的的综合性大规模中文数据集。数据主要来源于网页、书籍、官方媒体等。 我们使用规则+模型的方式进行了相关的过滤,并对数据进行了相似性去重,尽可能地提取出高质量地数据。
|
72 |
+
|
73 |
+
TeleChat-PTD 数据集大约公开了2.7亿条数据,数据由纯中文文本构成构成,原始大小约1TB,压缩后480G,共189个文件。数据集中已经去除了其它冗余信息。
|
74 |
+
|
75 |
+
### 数据下载
|
76 |
+
|
77 |
+
huggingface下载地址:[TeleChat-PTD](https://huggingface.co/datasets/Tele-AI/TeleChat-PTD)
|
78 |
+
|
79 |
+
modelscope下载地址:[TeleChat-PTD](https://modelscope.cn/datasets/TeleAI/TeleChat-PTD)
|
80 |
+
|
81 |
+
天翼云盘下载地址:[数据下载](https://cloud.189.cn/t/ia2QbaVzYf6z)(访问码:pkg8)
|
82 |
+
|
83 |
+
# 效果评测
|
84 |
+
TeleChat模型相比同规模模型在评测效果方面也有较好的表现,我们的评测集涵盖了包括MMLU、C-Eval、GAOKAO、AGIEval、CMMLU、 GSM8K、MATH、HumanEval、CHID等数据集,评测能力包括了自然语言理解、知识、数学计算和推理、代码生成等
|
85 |
+
|
86 |
+
## 评测结果如下
|
87 |
+
|
88 |
+
| Model | MMLU | C-Eval | CMMLU | AGIEval | GAOKAO | GSM8K | MATH | HumanEval | CSL | CHID | EPRSTMT | BBH | HellaSwag |
|
89 |
+
|:--------------------|:--------:|:------:|:------:|:---------:|:---------:|:------:|:------:|:---------:|:---------:|:---------:|:--------:|:------:|:---------:|
|
90 |
+
| | 5-shot | 5-shot | 5-shot | zero-shot | zero-shot | 4-shot | 4-shot | zero-shot | zero-shot | zero-shot |zero-shot | 3-shot | zero-shot |
|
91 |
+
| LLaMA2-7B-chat | 46.2 | 31.9 | 31.5 | 28.5 | 16.1 | 26.3 | 3.9 | 12.2 | 58.8 | 44.1 | 57.5 | 35.6 | 74.1 |
|
92 |
+
| LLaMA2-13B-chat | 54.6 | 36.2 | 38.7 | 32.3 | 18.6 | 29.6 | 5.0 | 18.9 | 61.2 | 48.0 | 59.4 | 40.2 | 78.2 |
|
93 |
+
| ChatGLM2-6B-chat | 45.9 | 52.6 | 49.3 | 39.0 | 46.4 | 28.8 | 6.5 | 11.0 | 61.2 | 57.9 | 71.2 | 32.7 | 57.0 |
|
94 |
+
| ChatGLM3-6B-chat | 51.9 | 53.8 | 54 | 38.9 | 49.3 | 56.7 | 18.7 | 61 | 65.6 | 63.4 | 85 | 44.6 | 62.7 |
|
95 |
+
| Baichuan2-7B-chat | 52.8 | 55.6 | 54.0 | 35.3 | 39.7 | 32.8 | 6 | 13.4 | 60 | 75.2 | 87.5 | 35.8 | 61.6 |
|
96 |
+
| Baichuan2-13B-chat | 57 | 56.7 | 58.4 | 40 | 51.4 | 55.3 | 8.6 | 17.7 | 63.1 | 78.2 | 87.5 | 49.9 | 66.9 |
|
97 |
+
| Qwen-7B-chat | 56.6 | 59.3 | 59.5 | 41.3 | 63.3 | 52.5 | 10.3 | 26.2 | 63.1 | 72.3 | 88.8 | 46.9 | 59.9 |
|
98 |
+
| Qwen-14B-chat | 66.4 | 71.7 | 70.0 | 47.3 | 76.5 | 61.0 | 26.8 | 36.6 | 55.6 | 72.3 | 91.2 | 58.0 | 65.2 |
|
99 |
+
| TeleChat-7B-chat | **60.5** | **64.6** | **64.3** | **46.8** | **59** | **36.7** | **10.3** | **20.1** | **66.8** | **88.0** | **87.5** | **19.5** | **36.7** |
|
100 |
+
| TeleChat-12B-chat | **73.3** | **66.6** | **74.2** | **51.7** | **53.1** | **57.2** | **16.0** | **22.0** | **60.6** | **83.2** | **86.3** | **52.2** | **71.5** |
|
101 |
+
|
102 |
+
说明:CMMLU、AGIEval、GAOKAO、CSL、CHID、EPRSTMT均基于[OpenCompass](https://github.com/open-compass/OpenCompass/)平台提供的评测方法进行评估,而对于对比模型,我们同时参考了官方汇报结果和OpenCompass结果。我们使用了自己的评测脚本评测MMLU与CEVAL榜单,具体方法见`evaluation/`文件夹。
|
103 |
+
|
104 |
+
# 模型推理
|
105 |
+
|
106 |
+
```python
|
107 |
+
import os
|
108 |
+
import torch
|
109 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
110 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
111 |
+
tokenizer = AutoTokenizer.from_pretrained('TeleAI/TeleChat-12B')
|
112 |
+
model = AutoModelForCausalLM.from_pretrained('TeleAI/TeleChat-12B', trust_remote_code=True, device_map="auto", torch_dtype=torch.float16)
|
113 |
+
generate_config = GenerationConfig.from_pretrained('TeleAI/TeleChat-12B')
|
114 |
+
question="生抽与老抽的区别?"
|
115 |
+
answer, history = model.chat(tokenizer = tokenizer, question=question, history=[], generation_config=generate_config, stream=False)
|
116 |
+
print(answer)
|
117 |
+
生抽和老抽是两种不同的酱油,它们的区别如下:
|
118 |
+
|
119 |
+
1. 原料不同:生抽是用大豆、小麦等谷物为原料制成的;而老抽则是用豆酱、面酱等发酵后的调味品为原料制成的。
|
120 |
+
|
121 |
+
2. 制作工艺不同:生抽是通过将大豆浸泡在水中,然后经过蒸煮、发酵等过程制成的;而老抽则是在生抽的基础上加入一定比例的盐、糖、味精等调料,再进行发酵制成的。
|
122 |
+
|
123 |
+
3. 口感和风味不同:生抽具有咸鲜的味道,口感比较清爽;而老抽则具有特殊的香味和味道,口感相对较重。
|
124 |
+
|
125 |
+
总的来说,生抽和老抽都是酱油的不同种类,它们在原料、制作工艺和口感等方面都有所不同。
|
126 |
+
```
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
# 声明、协议、引用
|
131 |
+
### 声明
|
132 |
+
我们在此声明,不要使用TeleChat模型及其衍生模型进行任何危害国家社会安全或违法的活动。同时,我们也要求使用者不要将TeleChat模型用于没有安全审查和备案的互联网服务。我们希望所有使用者遵守上述原则,确保科技发展在合法合规的环境下进行。
|
133 |
+
|
134 |
+
我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用TeleChat开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
|
135 |
+
|
136 |
+
### 协议
|
137 |
+
社区使用 TeleChat 模型需要遵循《[TeleChat模型社区许可协议](./TeleChat模型社区许可协议.pdf)》。TeleChat模型支持商业用途,如果您计划将 TeleChat 模型或其衍生品用于商业目的,您需要通过以下联系邮箱 [email protected],提交《TeleChat模型社区许可协议》要求的申请材料。审核通过后,将特此授予您一个非排他性、全球性、不可转让、不可再许可、可撤销的商用版权许可。
|
138 |
+
|
139 |
+
### 引用
|
140 |
+
如需引用我们的工作,请使用如下 reference:
|
141 |
+
```
|
142 |
+
@misc{wang2024telechat,
|
143 |
+
title={TeleChat Technical Report},
|
144 |
+
author={Zihan Wang and Xinzhang Liu and Shixuan Liu and Yitong Yao and Yuyao Huang and Zhongjiang He and Xuelong Li and Yongxiang Li and Zhonghao Che and Zhaoxi Zhang and Yan Wang and Xin Wang and Luwen Pu and Huihan Xu and Ruiyu Fang and Yu Zhao and Jie Zhang and Xiaomeng Huang and Zhilong Lu and Jiaxin Peng and Wenjun Zheng and Shiquan Wang and Bingkai Yang and Xuewei he and Zhuoru Jiang and Qiyi Xie and Yanhan Zhang and Zhongqiu Li and Lingling Shi and Weiwei Fu and Yin Zhang and Zilu Huang and Sishi Xiong and Yuxiang Zhang and Chao Wang and Shuangyong Song},
|
145 |
+
year={2024},
|
146 |
+
eprint={2401.03804},
|
147 |
+
archivePrefix={arXiv},
|
148 |
+
primaryClass={cs.CL}
|
149 |
+
}
|
150 |
+
```
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_residual_connection_post_layernorm": false,
|
3 |
+
"architectures": [
|
4 |
+
"TelechatForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_telechat.TelechatConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_telechat.TelechatForCausalLM"
|
9 |
+
},
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"attention_softmax_in_fp32": true,
|
12 |
+
"bias_dropout_fusion": true,
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"hidden_dropout": 0.0,
|
16 |
+
"hidden_size": 5120,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"layer_norm_epsilon": 1e-05,
|
19 |
+
"masked_softmax_fusion": true,
|
20 |
+
"model_type": "telechat",
|
21 |
+
"n_head": 32,
|
22 |
+
"n_inner": null,
|
23 |
+
"n_layer": 38,
|
24 |
+
"offset_alibi": 100,
|
25 |
+
"pad_token_id": 3,
|
26 |
+
"pretraining_tp": 2,
|
27 |
+
"seq_length": 8192,
|
28 |
+
"skip_bias_add": true,
|
29 |
+
"skip_bias_add_qkv": false,
|
30 |
+
"slow_but_exact": false,
|
31 |
+
"transformers_version": "4.24.0",
|
32 |
+
"unk_token_id": 0,
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 120000,
|
35 |
+
"ffn_hidden_size": 12288,
|
36 |
+
"flash_attn":true,
|
37 |
+
"tie_word_embeddings":false,
|
38 |
+
"training_seqlen":8192,
|
39 |
+
"logn":false,
|
40 |
+
"semi_causal":false,
|
41 |
+
"embed_layernorm":false
|
42 |
+
}
|
43 |
+
|
configuration_telechat.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Telechat configuration"""
|
17 |
+
|
18 |
+
from packaging import version
|
19 |
+
from collections import OrderedDict
|
20 |
+
from transformers.utils import is_torch_available, logging
|
21 |
+
from transformers.configuration_utils import PretrainedConfig
|
22 |
+
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
class TelechatConfig(PretrainedConfig):
|
27 |
+
"""
|
28 |
+
Args:
|
29 |
+
vocab_size (`int`, *optional*, defaults to 160256): Vocabulary size of the Telechat model.
|
30 |
+
hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states.
|
31 |
+
ffn_hidden_size (`int`, *optional*, defaults to 12288): Dimensionality of the feed-forward hidden states.
|
32 |
+
n_layer (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer
|
33 |
+
n_head (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer.
|
34 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers.
|
35 |
+
initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
36 |
+
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
|
37 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0): Dropout rate of the dropout function on the bias dropout.
|
38 |
+
attention_dropout (`float`, *optional*, defaults to 0.0): Dropout rate applied to the attention probs
|
39 |
+
use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions.
|
40 |
+
training_seqlen (`int`, *optional*, defaults to 8192): Sequence length during last finetuning.
|
41 |
+
logn (`bool`, *optional*, defaults to `True`): Whether or not to use logN during extrapolation.
|
42 |
+
embed_layernorm (`bool`, *optional*, defaults to `True`): Whether or not to use embedding layernorm.
|
43 |
+
|
44 |
+
"""
|
45 |
+
|
46 |
+
model_type = "telechat"
|
47 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
48 |
+
attribute_map = {
|
49 |
+
"num_hidden_layers": "n_layer",
|
50 |
+
"num_attention_heads": "n_head",
|
51 |
+
}
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
vocab_size=160256,
|
56 |
+
hidden_size=4096,
|
57 |
+
n_layer=30,
|
58 |
+
n_head=32,
|
59 |
+
layer_norm_epsilon=1e-5,
|
60 |
+
initializer_range=0.02,
|
61 |
+
use_cache=True,
|
62 |
+
bos_token_id=1,
|
63 |
+
eos_token_id=2,
|
64 |
+
apply_residual_connection_post_layernorm=False,
|
65 |
+
hidden_dropout=0.0,
|
66 |
+
attention_dropout=0.0,
|
67 |
+
ffn_hidden_size=12288,
|
68 |
+
training_seqlen = 8192,
|
69 |
+
logn = True,
|
70 |
+
embed_layernorm = False,
|
71 |
+
**kwargs,
|
72 |
+
):
|
73 |
+
self.vocab_size = vocab_size
|
74 |
+
n_embed = kwargs.pop("n_embed", None)
|
75 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
76 |
+
self.n_layer = n_layer
|
77 |
+
self.n_head = n_head
|
78 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
79 |
+
self.initializer_range = initializer_range
|
80 |
+
self.use_cache = use_cache
|
81 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
82 |
+
self.hidden_dropout = hidden_dropout
|
83 |
+
self.attention_dropout = attention_dropout
|
84 |
+
self.bos_token_id = bos_token_id
|
85 |
+
self.eos_token_id = eos_token_id
|
86 |
+
self.logn = logn
|
87 |
+
self.ffn_hidden_size = ffn_hidden_size
|
88 |
+
self.training_seqlen = training_seqlen
|
89 |
+
self.embed_layernorm = embed_layernorm
|
90 |
+
|
91 |
+
|
92 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
93 |
+
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_length": 8192,
|
3 |
+
"do_sample": false,
|
4 |
+
"use_cache": true,
|
5 |
+
"temperature": 0.3,
|
6 |
+
"top_k": 5,
|
7 |
+
"top_p": 0.85,
|
8 |
+
"repetition_penalty": 1.01,
|
9 |
+
"pad_token_id": 3,
|
10 |
+
"bos_token_id": 1,
|
11 |
+
"eos_token_id": 2,
|
12 |
+
"user_token_id": 20,
|
13 |
+
"bot_token_id": 21
|
14 |
+
}
|
generation_utils.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
from collections import deque
|
3 |
+
from queue import Queue
|
4 |
+
import copy
|
5 |
+
|
6 |
+
|
7 |
+
class History:
|
8 |
+
|
9 |
+
def __init__(self, tokenizer, history):
|
10 |
+
'''
|
11 |
+
init from a list of dict
|
12 |
+
'''
|
13 |
+
# use deque to meet some special situation
|
14 |
+
self.input_history = deque()
|
15 |
+
self.tokenizer = tokenizer
|
16 |
+
if history:
|
17 |
+
self._transfer_from_list(history)
|
18 |
+
|
19 |
+
def _transfer_from_list(self, history):
|
20 |
+
for message in history:
|
21 |
+
content = message.get("content")
|
22 |
+
# the token result may not be equal to the result model gen
|
23 |
+
message.update(self.tokenizer(content))
|
24 |
+
self.input_history.append(message)
|
25 |
+
|
26 |
+
def append(self, message):
|
27 |
+
content = message.get("content")
|
28 |
+
if "input_ids" not in message or "attention_mask" not in message:
|
29 |
+
message.update(self.tokenizer(content))
|
30 |
+
self.input_history.append(message)
|
31 |
+
|
32 |
+
def append_left(self, message):
|
33 |
+
content = message.get("content")
|
34 |
+
if "input_ids" not in message or "attention_mask" not in message:
|
35 |
+
message.update(self.tokenizer(content))
|
36 |
+
self.input_history.appendleft(message)
|
37 |
+
|
38 |
+
def pop(self):
|
39 |
+
x = self.input_history.pop()
|
40 |
+
return x
|
41 |
+
|
42 |
+
def pop_left(self):
|
43 |
+
x = self.pop_left()
|
44 |
+
return x
|
45 |
+
|
46 |
+
def update(self, message):
|
47 |
+
self.input_history.pop()
|
48 |
+
self.append(message)
|
49 |
+
|
50 |
+
def __len__(self):
|
51 |
+
return self.input_history.__len__()
|
52 |
+
|
53 |
+
def __str__(self):
|
54 |
+
return self.input_history.__str__()
|
55 |
+
|
56 |
+
def __copy__(self):
|
57 |
+
new_instance = type(self)(self.tokenizer, [])
|
58 |
+
new_instance.input_history = copy.copy(self.input_history)
|
59 |
+
return new_instance
|
60 |
+
|
61 |
+
def __deepcopy__(self, memodict={}):
|
62 |
+
new_instance = type(self)(self.tokenizer, [])
|
63 |
+
new_instance.input_history = copy.deepcopy(self.input_history)
|
64 |
+
return new_instance
|
65 |
+
|
66 |
+
|
67 |
+
class TelechatIterTextStreamer:
|
68 |
+
"""
|
69 |
+
With reference to the TextIterStreamers in transformers, we have rewritten this class
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self, tokenizer, history: History = None, skip_prompt: bool = False, timeout: Optional[float] = None,
|
74 |
+
**decode_kwargs
|
75 |
+
):
|
76 |
+
|
77 |
+
self.tokenizer = tokenizer
|
78 |
+
self.history = history
|
79 |
+
self.skip_prompt = skip_prompt
|
80 |
+
self.timeout = timeout
|
81 |
+
self.decode_kwargs = decode_kwargs
|
82 |
+
|
83 |
+
self.text_queue = Queue()
|
84 |
+
self.cache_time = 0
|
85 |
+
self.text_until = ""
|
86 |
+
self.token_until = []
|
87 |
+
self.stop_signal = None
|
88 |
+
self.next_tokens_are_prompt = True
|
89 |
+
|
90 |
+
self.history.append({"role": "bot", "content": self.text_until})
|
91 |
+
|
92 |
+
def put(self, value):
|
93 |
+
"""
|
94 |
+
put printable text into queue
|
95 |
+
"""
|
96 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
97 |
+
raise ValueError("TextStreamer only supports batch size 1")
|
98 |
+
elif len(value.shape) > 1:
|
99 |
+
value = value[0]
|
100 |
+
|
101 |
+
if self.skip_prompt and self.next_tokens_are_prompt:
|
102 |
+
self.next_tokens_are_prompt = False
|
103 |
+
return
|
104 |
+
|
105 |
+
if value[-1] == self.tokenizer.eos_token_id:
|
106 |
+
return
|
107 |
+
|
108 |
+
# there may be some smart way to decode.
|
109 |
+
self.token_until.extend(value.tolist())
|
110 |
+
text = self.tokenizer.decode(self.token_until, **self.decode_kwargs)
|
111 |
+
|
112 |
+
|
113 |
+
if self._is_printable(text) or self.cache_time >= 6:
|
114 |
+
output_text = text[len(self.text_until):]
|
115 |
+
self.text_until = text
|
116 |
+
|
117 |
+
else:
|
118 |
+
self.cache_time+=1
|
119 |
+
return
|
120 |
+
|
121 |
+
self.on_finalized_text(output_text)
|
122 |
+
|
123 |
+
def end(self):
|
124 |
+
"""Flushes any remaining cache and prints a newline to stdout."""
|
125 |
+
# Flush the cache, if it exists
|
126 |
+
text = self.tokenizer.decode(self.token_until, **self.decode_kwargs)
|
127 |
+
output_text = text[len(self.text_until):]
|
128 |
+
self.text_until = text
|
129 |
+
self.on_finalized_text(output_text, stream_end=True)
|
130 |
+
self.clear_cache()
|
131 |
+
|
132 |
+
def clear_cache(self):
|
133 |
+
self.cache_time = 0
|
134 |
+
self.token_until = []
|
135 |
+
self.text_until = ""
|
136 |
+
self.history = None
|
137 |
+
self.next_tokens_are_prompt = True
|
138 |
+
|
139 |
+
def on_finalized_text(self, text: str, stream_end: bool = False):
|
140 |
+
"""Put the text tuple in the queue."""
|
141 |
+
self.history.update({"role": "bot", "content": self.text_until, "input_ids": self.token_until,
|
142 |
+
"attention_mask": [1] * len(self.token_until)})
|
143 |
+
self.text_queue.put((text, self.history), timeout=self.timeout)
|
144 |
+
if stream_end:
|
145 |
+
self.text_queue.put((self.stop_signal, self.history), timeout=self.timeout)
|
146 |
+
|
147 |
+
@staticmethod
|
148 |
+
def _is_printable(cp):
|
149 |
+
"""Checks whether tokens can be decoded or not"""
|
150 |
+
if "�" in cp:
|
151 |
+
return False
|
152 |
+
return True
|
153 |
+
|
154 |
+
def __iter__(self):
|
155 |
+
return self
|
156 |
+
|
157 |
+
def __next__(self):
|
158 |
+
value_now, history_until = self.text_queue.get(timeout=self.timeout)
|
159 |
+
if value_now == self.stop_signal:
|
160 |
+
raise StopIteration()
|
161 |
+
else:
|
162 |
+
return value_now, history_until
|
modeling_telechat.py
ADDED
@@ -0,0 +1,910 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
17 |
+
|
18 |
+
# Copyright (c) 2021 EleutherAI
|
19 |
+
# This file is based on code by the authors denoted below and has been modified from its original version.
|
20 |
+
#
|
21 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
22 |
+
#
|
23 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
24 |
+
# you may not use this file except in compliance with the License.
|
25 |
+
# You may obtain a copy of the License at
|
26 |
+
#
|
27 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
28 |
+
#
|
29 |
+
# Unless required by applicable law or agreed to in writing, software
|
30 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
31 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
32 |
+
# See the License for the specific language governing permissions and
|
33 |
+
# limitations under the License.
|
34 |
+
|
35 |
+
|
36 |
+
"""PyTorch TELECHAT model."""
|
37 |
+
|
38 |
+
import warnings
|
39 |
+
from typing import Optional, Tuple, Union, List, Dict
|
40 |
+
from threading import Thread
|
41 |
+
|
42 |
+
import torch
|
43 |
+
import math
|
44 |
+
import copy
|
45 |
+
from torch import nn
|
46 |
+
import torch.utils.checkpoint
|
47 |
+
from torch.nn import functional as F
|
48 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
49 |
+
from transformers.modeling_outputs import (
|
50 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
51 |
+
CausalLMOutputWithCrossAttentions
|
52 |
+
)
|
53 |
+
from transformers.modeling_utils import PreTrainedModel
|
54 |
+
from transformers.utils import logging
|
55 |
+
from transformers import GenerationConfig
|
56 |
+
|
57 |
+
from .configuration_telechat import TelechatConfig
|
58 |
+
from .generation_utils import History, TelechatIterTextStreamer
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__)
|
61 |
+
|
62 |
+
_CHECKPOINT_FOR_DOC = "telechat"
|
63 |
+
_CONFIG_FOR_DOC = "TelechatConfig"
|
64 |
+
|
65 |
+
TELECHAT_PRETRAINED_MODEL_ARCHIVE_LIST = []
|
66 |
+
|
67 |
+
try:
|
68 |
+
from einops import rearrange
|
69 |
+
except ImportError:
|
70 |
+
rearrange = None
|
71 |
+
|
72 |
+
use_flash_attn = True
|
73 |
+
try:
|
74 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_func
|
75 |
+
except ImportError:
|
76 |
+
try:
|
77 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func
|
78 |
+
except ImportError:
|
79 |
+
flash_attn_unpadded_func = None
|
80 |
+
|
81 |
+
|
82 |
+
class RotaryEmbedding(torch.nn.Module):
|
83 |
+
# Extracted from: https://github.com/EleutherAI/gpt-neox
|
84 |
+
def __init__(self, dim, config, base=10000):
|
85 |
+
super().__init__()
|
86 |
+
self.config = config
|
87 |
+
self.dim = dim
|
88 |
+
self.base = base
|
89 |
+
self.max_seq_len_cached = None
|
90 |
+
self.cos_cached = None
|
91 |
+
self.sin_cached = None
|
92 |
+
|
93 |
+
def get_mscale(self, scale=1):
|
94 |
+
if scale <= 1:
|
95 |
+
return 1.0
|
96 |
+
return 0.1 * math.log(scale) + 1.0
|
97 |
+
|
98 |
+
def get_ntk_alpha(self, true_seq_len):
|
99 |
+
context_value = math.log(true_seq_len / 4096, 2) + 1
|
100 |
+
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
101 |
+
ntk_alpha = max(ntk_alpha, 1)
|
102 |
+
return ntk_alpha
|
103 |
+
|
104 |
+
def forward(self, x, dtype, seq_dim=0):
|
105 |
+
seq_len = x.shape[seq_dim]
|
106 |
+
self.mscale = 1.0
|
107 |
+
if not self.training:
|
108 |
+
seq_len = max(seq_len, self.config.training_seqlen)
|
109 |
+
self.mscale = float(self.get_mscale(seq_len / self.config.training_seqlen))
|
110 |
+
ntk_alpha = self.get_ntk_alpha(seq_len)
|
111 |
+
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
112 |
+
self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim))
|
113 |
+
self.max_seq_len_cached = seq_len
|
114 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
115 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
116 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
117 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
118 |
+
# if self.precision == torch.bfloat16:
|
119 |
+
emb = emb.float() if dtype == torch.bfloat16 else emb
|
120 |
+
# [sx, 1 (b * np), hn]
|
121 |
+
self.cos_cached = self.mscale * emb.cos()[:, None, :].to(dtype)
|
122 |
+
self.sin_cached = self.mscale * emb.sin()[:, None, :].to(dtype)
|
123 |
+
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
|
124 |
+
|
125 |
+
|
126 |
+
# rotary pos emb helpers:
|
127 |
+
def rotate_half(x):
|
128 |
+
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
129 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
130 |
+
|
131 |
+
|
132 |
+
def apply_rotary_pos_emb_torch(q, k, cos, sin, offset: int = 0): # jitting fails with bf16
|
133 |
+
cos, sin = cos[offset:q.shape[0] + offset, ...], sin[offset:q.shape[0] + offset, ...]
|
134 |
+
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
135 |
+
|
136 |
+
|
137 |
+
class MixedFusedRMSNorm(nn.Module):
|
138 |
+
# Extracted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
139 |
+
def __init__(self, hidden_size, eps=1e-6):
|
140 |
+
super().__init__()
|
141 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
142 |
+
self.variance_epsilon = eps
|
143 |
+
|
144 |
+
def forward(self, hidden_states):
|
145 |
+
input_dtype = hidden_states.dtype
|
146 |
+
hidden_states = hidden_states.to(torch.float32)
|
147 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
148 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
149 |
+
return self.weight * hidden_states.to(input_dtype)
|
150 |
+
|
151 |
+
|
152 |
+
class FlashSelfAttention(torch.nn.Module):
|
153 |
+
# Extracted from https://github.com/microsoft/Megatron-DeepSpeed/blob/main/megatron/model/transformer.py
|
154 |
+
"""Implement the scaled dot product attention with softmax.
|
155 |
+
Arguments
|
156 |
+
---------
|
157 |
+
softmax_scale: The temperature to use for the softmax attention.
|
158 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
159 |
+
runtime)
|
160 |
+
attention_dropout: The dropout rate to apply to the attention
|
161 |
+
(default: 0.0)
|
162 |
+
"""
|
163 |
+
|
164 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
|
165 |
+
device=None, dtype=None):
|
166 |
+
super().__init__()
|
167 |
+
assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
|
168 |
+
'e.g., with pip install flash-attn')
|
169 |
+
assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
|
170 |
+
self.causal = causal
|
171 |
+
self.softmax_scale = softmax_scale
|
172 |
+
self.dropout_p = attention_dropout
|
173 |
+
|
174 |
+
def forward(self, q, k, v):
|
175 |
+
"""Implements the multihead softmax attention.
|
176 |
+
Arguments
|
177 |
+
---------
|
178 |
+
q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
|
179 |
+
"""
|
180 |
+
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
|
181 |
+
assert all((i.is_cuda for i in (q, k, v)))
|
182 |
+
|
183 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
184 |
+
seqlen_k = k.shape[1]
|
185 |
+
|
186 |
+
q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
|
187 |
+
cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
|
188 |
+
device=q.device)
|
189 |
+
if self.training:
|
190 |
+
# during training q,k,v always have same seqlen
|
191 |
+
assert seqlen_k == seqlen_q
|
192 |
+
|
193 |
+
is_causal = self.causal
|
194 |
+
cu_seqlens_k = cu_seqlens_q
|
195 |
+
dropout_p = self.dropout_p
|
196 |
+
else:
|
197 |
+
# turn off FA causal mask after first inference autoregressive iteration
|
198 |
+
# only on first autoregressive step q,k,v have same seqlen
|
199 |
+
is_causal = seqlen_q == seqlen_k
|
200 |
+
cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
|
201 |
+
device=q.device)
|
202 |
+
dropout_p = 0
|
203 |
+
|
204 |
+
output = flash_attn_unpadded_func(
|
205 |
+
q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
|
206 |
+
dropout_p=dropout_p,
|
207 |
+
softmax_scale=self.softmax_scale, causal=is_causal
|
208 |
+
)
|
209 |
+
|
210 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
211 |
+
return output
|
212 |
+
|
213 |
+
|
214 |
+
def _make_causal_mask(
|
215 |
+
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
216 |
+
) -> torch.BoolTensor:
|
217 |
+
"""
|
218 |
+
Make causal mask used for self-attention.
|
219 |
+
"""
|
220 |
+
batch_size, target_length = input_ids_shape
|
221 |
+
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
|
222 |
+
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
|
223 |
+
seq_ids = torch.arange(target_length, device=device)
|
224 |
+
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
|
225 |
+
|
226 |
+
if past_key_values_length > 0:
|
227 |
+
mask[:, :past_key_values_length] = False
|
228 |
+
|
229 |
+
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
230 |
+
return expanded_mask
|
231 |
+
|
232 |
+
|
233 |
+
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
|
234 |
+
"""
|
235 |
+
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
|
236 |
+
"""
|
237 |
+
batch_size, src_length = mask.shape
|
238 |
+
tgt_length = tgt_length if tgt_length is not None else src_length
|
239 |
+
|
240 |
+
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
241 |
+
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
|
242 |
+
|
243 |
+
|
244 |
+
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
245 |
+
"""
|
246 |
+
Dropout add function
|
247 |
+
|
248 |
+
Args:
|
249 |
+
x (`torch.tensor`, *required*):
|
250 |
+
input tensor
|
251 |
+
residual (`torch.tensor`, *required*):
|
252 |
+
residual tensor
|
253 |
+
prob (`float`, *required*):
|
254 |
+
dropout probability
|
255 |
+
training (`bool`, *required*):
|
256 |
+
training mode
|
257 |
+
"""
|
258 |
+
out = F.dropout(x, p=prob, training=training)
|
259 |
+
out = residual + out
|
260 |
+
return out
|
261 |
+
|
262 |
+
|
263 |
+
def telechat_gelu_forward(x: torch.Tensor) -> torch.Tensor:
|
264 |
+
"""
|
265 |
+
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
|
266 |
+
make the model jitable.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
x (`torch.tensor`, *required*):
|
270 |
+
input hidden states
|
271 |
+
"""
|
272 |
+
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
|
273 |
+
|
274 |
+
|
275 |
+
def telechat_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
276 |
+
"""
|
277 |
+
gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
|
278 |
+
0.3989423 * x * torch.exp(-0.5 * x * x)
|
279 |
+
|
280 |
+
Args:
|
281 |
+
g (`torch.tensor`, *required*):
|
282 |
+
gradient output tensor
|
283 |
+
x (`torch.tensor`, *required*):
|
284 |
+
input tensor
|
285 |
+
"""
|
286 |
+
x = x[0] # x is a tuple of 1 element, needs to unpack it first
|
287 |
+
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
288 |
+
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
|
289 |
+
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
|
290 |
+
return ff * g
|
291 |
+
|
292 |
+
|
293 |
+
class GeLUFunction(torch.autograd.Function):
|
294 |
+
@staticmethod
|
295 |
+
def forward(ctx, input: torch.Tensor) -> torch.Tensor:
|
296 |
+
ctx.save_for_backward(input)
|
297 |
+
return telechat_gelu_forward(input)
|
298 |
+
|
299 |
+
@staticmethod
|
300 |
+
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
|
301 |
+
input = ctx.saved_tensors
|
302 |
+
tmp = telechat_gelu_back(grad_output, input)
|
303 |
+
return tmp
|
304 |
+
|
305 |
+
|
306 |
+
class TelechatGelu(nn.Module):
|
307 |
+
"""
|
308 |
+
TelechatBiasGelu wrapper function that make use of the simple function on inference mode to make the model
|
309 |
+
torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
|
310 |
+
copied from Megatron-DeepSpeed code and adapted for our needs
|
311 |
+
|
312 |
+
See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
|
313 |
+
"""
|
314 |
+
|
315 |
+
def __init__(self):
|
316 |
+
super().__init__()
|
317 |
+
|
318 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
319 |
+
if self.training:
|
320 |
+
return GeLUFunction.apply(x)
|
321 |
+
else:
|
322 |
+
return telechat_gelu_forward(x)
|
323 |
+
|
324 |
+
|
325 |
+
class TelechatAttention(nn.Module):
|
326 |
+
def __init__(self, config: TelechatConfig, layer_idx):
|
327 |
+
super().__init__()
|
328 |
+
self.kv_cache = None
|
329 |
+
self.layer_idx = layer_idx
|
330 |
+
|
331 |
+
self.hidden_size = config.hidden_size
|
332 |
+
self.num_heads = config.n_head
|
333 |
+
self.head_dim = self.hidden_size // self.num_heads
|
334 |
+
self.split_size = self.hidden_size
|
335 |
+
self.hidden_dropout = config.hidden_dropout
|
336 |
+
self.config = config
|
337 |
+
|
338 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
339 |
+
raise ValueError(
|
340 |
+
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
341 |
+
f" {self.num_heads})."
|
342 |
+
)
|
343 |
+
|
344 |
+
# Layer-wise attention scaling
|
345 |
+
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
346 |
+
self.beta = 1.0
|
347 |
+
|
348 |
+
self.num_key_value_heads = self.num_heads
|
349 |
+
kv_projection_size = self.head_dim * self.num_key_value_heads
|
350 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
351 |
+
self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
352 |
+
self.key_value = nn.Linear(self.hidden_size, kv_projection_size * 2, bias=False)
|
353 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
354 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
355 |
+
self.rotary_emb = RotaryEmbedding(self.head_dim, config=config)
|
356 |
+
|
357 |
+
self.core_attention_flash = FlashSelfAttention(
|
358 |
+
causal=True, attention_dropout=config.attention_dropout
|
359 |
+
)
|
360 |
+
|
361 |
+
self.last_key_layer = None
|
362 |
+
|
363 |
+
def repeat_kv(self, hidden_states, n_rep):
|
364 |
+
slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape
|
365 |
+
if n_rep == 1:
|
366 |
+
return hidden_states
|
367 |
+
hidden_states = hidden_states[:, :, :, None, :].expand(slen, batch, num_key_value_heads_per_partition, n_rep,
|
368 |
+
head_dim)
|
369 |
+
return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim)
|
370 |
+
|
371 |
+
def split_tensor_along_last_dim(self,
|
372 |
+
tensor: torch.Tensor,
|
373 |
+
num_partitions: int,
|
374 |
+
contiguous_split_chunks: bool = False,
|
375 |
+
):
|
376 |
+
|
377 |
+
# Get the size and dimension.
|
378 |
+
last_dim = tensor.dim() - 1
|
379 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
380 |
+
# Split.
|
381 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
382 |
+
# Note: torch.split does not create contiguous tensors by default.
|
383 |
+
if contiguous_split_chunks:
|
384 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
385 |
+
|
386 |
+
return tensor_list
|
387 |
+
|
388 |
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
389 |
+
batch_size_and_num_heads, seq_length, _ = x.shape
|
390 |
+
batch_size = batch_size_and_num_heads // self.num_heads
|
391 |
+
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
392 |
+
x = x.permute(0, 2, 1, 3)
|
393 |
+
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
394 |
+
|
395 |
+
def forward(
|
396 |
+
self,
|
397 |
+
hidden_states: torch.Tensor,
|
398 |
+
residual: torch.Tensor,
|
399 |
+
attention_mask: torch.Tensor,
|
400 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
401 |
+
use_cache: bool = False,
|
402 |
+
output_attentions: bool = False,
|
403 |
+
):
|
404 |
+
hidden_states = hidden_states.transpose(1, 0)
|
405 |
+
query_layer = self.query(hidden_states)
|
406 |
+
new_tensor_shape = query_layer.size()[:-1] + \
|
407 |
+
(self.num_heads,
|
408 |
+
self.head_dim)
|
409 |
+
query_layer = query_layer.view(*new_tensor_shape)
|
410 |
+
|
411 |
+
mixed_kv_layer = self.key_value(hidden_states)
|
412 |
+
new_tensor_shape = mixed_kv_layer.size()[:-1] + \
|
413 |
+
(self.num_key_value_heads,
|
414 |
+
2 * self.head_dim)
|
415 |
+
mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)
|
416 |
+
(key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2)
|
417 |
+
|
418 |
+
output_size = (query_layer.size(1),
|
419 |
+
query_layer.size(2),
|
420 |
+
query_layer.size(0),
|
421 |
+
key_layer.size(0))
|
422 |
+
|
423 |
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
424 |
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
425 |
+
|
426 |
+
apply_rotary_fn = apply_rotary_pos_emb_torch
|
427 |
+
|
428 |
+
seq_len = key_layer.shape[0]
|
429 |
+
offset = 0
|
430 |
+
|
431 |
+
if use_cache and layer_past != None:
|
432 |
+
past_key, past_value = layer_past
|
433 |
+
offset = past_key.shape[0]
|
434 |
+
seq_len += offset
|
435 |
+
|
436 |
+
cos, sin = self.rotary_emb(value_layer, dtype=value_layer.dtype)
|
437 |
+
|
438 |
+
query_layer, key_layer = apply_rotary_fn(query_layer, key_layer, cos, sin, offset=offset)
|
439 |
+
if use_cache:
|
440 |
+
if layer_past != None:
|
441 |
+
past_key, past_value = layer_past
|
442 |
+
key_layer = torch.cat((past_key, key_layer[-1, ...].unsqueeze(0)), dim=0)
|
443 |
+
value_layer = torch.cat((past_value, value_layer[-1, ...].unsqueeze(0)), dim=0)
|
444 |
+
layer_past = key_layer, value_layer
|
445 |
+
s, bz, head, dim = value_layer.shape
|
446 |
+
s_key = key_layer.shape[0]
|
447 |
+
s_query = query_layer.shape[0]
|
448 |
+
query_layer = query_layer.reshape((s_query, bz, head, dim))
|
449 |
+
key_layer = key_layer.reshape((s_key, bz, head, dim))
|
450 |
+
|
451 |
+
if self.config.flash_attn:
|
452 |
+
q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() for x in
|
453 |
+
(query_layer, key_layer, value_layer)]
|
454 |
+
context_layer = self.core_attention_flash(q, k, v)
|
455 |
+
context_layer = rearrange(context_layer, 'b s h d -> b s (h d)').contiguous()
|
456 |
+
else:
|
457 |
+
##[sq, b, np, hn] -> [sq, b * np, hn]
|
458 |
+
query_layer = query_layer.reshape(s_query, bz * self.num_heads, dim)
|
459 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
460 |
+
key_layer = key_layer.reshape(s_key, bz * self.num_heads, dim)
|
461 |
+
matmul_result = self.inv_norm_factor * torch.einsum('bik,bkj->bij', query_layer.transpose(0, 1),
|
462 |
+
key_layer.transpose(0, 1).transpose(1, 2))
|
463 |
+
|
464 |
+
attention_scores = matmul_result.view(bz, self.num_heads, s_query, s_key)
|
465 |
+
|
466 |
+
input_dtype = attention_scores.dtype
|
467 |
+
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
468 |
+
attention_scores = attention_scores.to(torch.float)
|
469 |
+
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
|
470 |
+
attention_probs = F.softmax(attn_weights, dim=-1).to(input_dtype) ##dtype = torch.float32
|
471 |
+
attention_probs = self.attention_dropout(attention_probs)
|
472 |
+
attention_probs_reshaped = attention_probs.view(bz * self.num_heads, s_query, s_key)
|
473 |
+
|
474 |
+
value_layer = value_layer.reshape(s_key, bz * self.num_heads, dim)
|
475 |
+
context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1))
|
476 |
+
context_layer = self._merge_heads(context_layer)
|
477 |
+
|
478 |
+
output_tensor = self.dense(context_layer)
|
479 |
+
|
480 |
+
output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
|
481 |
+
present = None
|
482 |
+
outputs = (output_tensor, present)
|
483 |
+
if output_attentions:
|
484 |
+
outputs += (attention_probs,)
|
485 |
+
|
486 |
+
return output_tensor, layer_past
|
487 |
+
|
488 |
+
|
489 |
+
class TelechatMLP(nn.Module):
|
490 |
+
def __init__(self, config: TelechatConfig):
|
491 |
+
super().__init__()
|
492 |
+
hidden_size = config.hidden_size
|
493 |
+
self.gate_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
|
494 |
+
self.up_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
|
495 |
+
self.down_proj = nn.Linear(config.ffn_hidden_size, hidden_size, bias=True)
|
496 |
+
self.hidden_dropout = config.hidden_dropout
|
497 |
+
|
498 |
+
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
|
499 |
+
intermediate_output = self.down_proj(F.silu(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
|
500 |
+
output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
|
501 |
+
return output
|
502 |
+
|
503 |
+
|
504 |
+
class TelechatBlock(nn.Module):
|
505 |
+
def __init__(self, config: TelechatConfig, layer_idx):
|
506 |
+
super().__init__()
|
507 |
+
hidden_size = config.hidden_size
|
508 |
+
|
509 |
+
self.input_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
|
510 |
+
self.num_heads = config.n_head
|
511 |
+
self.layer_idx = layer_idx
|
512 |
+
self.self_attention = TelechatAttention(config, layer_idx)
|
513 |
+
self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
|
514 |
+
|
515 |
+
self.mlp = TelechatMLP(config)
|
516 |
+
|
517 |
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
518 |
+
self.hidden_dropout = config.hidden_dropout
|
519 |
+
|
520 |
+
def forward(
|
521 |
+
self,
|
522 |
+
hidden_states: torch.Tensor,
|
523 |
+
attention_mask: torch.Tensor,
|
524 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
525 |
+
use_cache: bool = False,
|
526 |
+
output_attentions: bool = False,
|
527 |
+
):
|
528 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
529 |
+
if self.apply_residual_connection_post_layernorm:
|
530 |
+
residual = layernorm_output
|
531 |
+
else:
|
532 |
+
residual = hidden_states
|
533 |
+
|
534 |
+
attn_outputs = self.self_attention(
|
535 |
+
layernorm_output,
|
536 |
+
residual,
|
537 |
+
layer_past=layer_past,
|
538 |
+
attention_mask=attention_mask,
|
539 |
+
use_cache=use_cache,
|
540 |
+
output_attentions=output_attentions,
|
541 |
+
)
|
542 |
+
|
543 |
+
attention_output = attn_outputs[0]
|
544 |
+
outputs = attn_outputs[1:]
|
545 |
+
layernorm_output = self.post_attention_layernorm(attention_output)
|
546 |
+
|
547 |
+
if self.apply_residual_connection_post_layernorm:
|
548 |
+
residual = layernorm_output
|
549 |
+
else:
|
550 |
+
residual = attention_output
|
551 |
+
output = self.mlp(layernorm_output, residual)
|
552 |
+
|
553 |
+
if use_cache:
|
554 |
+
outputs = (output,) + outputs
|
555 |
+
else:
|
556 |
+
outputs = (output,) + outputs[1:]
|
557 |
+
|
558 |
+
return outputs
|
559 |
+
|
560 |
+
|
561 |
+
class TelechatPreTrainedModel(PreTrainedModel):
|
562 |
+
config_class = TelechatConfig
|
563 |
+
base_model_prefix = "transformer"
|
564 |
+
supports_gradient_checkpointing = True
|
565 |
+
_no_split_modules = ["TelechatBlock"]
|
566 |
+
_skip_keys_device_placement = "past_key_values"
|
567 |
+
|
568 |
+
def __init__(self, *inputs, **kwargs):
|
569 |
+
super().__init__(*inputs, **kwargs)
|
570 |
+
|
571 |
+
def _init_weights(self, module: nn.Module):
|
572 |
+
"""Initialize the weights."""
|
573 |
+
if isinstance(module, nn.Linear):
|
574 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
575 |
+
if module.bias is not None:
|
576 |
+
module.bias.data.zero_()
|
577 |
+
|
578 |
+
elif isinstance(module, nn.Embedding):
|
579 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
580 |
+
if module.padding_idx is not None:
|
581 |
+
module.weight.data[module.padding_idx].zero_()
|
582 |
+
|
583 |
+
elif isinstance(module, LayerNorm):
|
584 |
+
module.bias.data.zero_()
|
585 |
+
module.weight.data.fill_(1.0)
|
586 |
+
|
587 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
588 |
+
if isinstance(module, TelechatModel):
|
589 |
+
module.gradient_checkpointing = value
|
590 |
+
|
591 |
+
|
592 |
+
class TelechatModel(TelechatPreTrainedModel):
|
593 |
+
def __init__(self, config: TelechatConfig):
|
594 |
+
super().__init__(config)
|
595 |
+
|
596 |
+
self.embed_dim = config.hidden_size
|
597 |
+
self.num_heads = config.n_head
|
598 |
+
self.config = config
|
599 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
600 |
+
if self.config.embed_layernorm:
|
601 |
+
self.word_embeddings_layernorm = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
602 |
+
|
603 |
+
self.h = nn.ModuleList([TelechatBlock(config, _) for _ in range(config.num_hidden_layers)])
|
604 |
+
self.ln_f = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
605 |
+
self.gradient_checkpointing = False
|
606 |
+
self.post_init()
|
607 |
+
|
608 |
+
def get_input_embeddings(self):
|
609 |
+
return self.word_embeddings
|
610 |
+
|
611 |
+
def _prepare_attn_mask(
|
612 |
+
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
|
613 |
+
) -> torch.BoolTensor:
|
614 |
+
combined_attention_mask = None
|
615 |
+
device = attention_mask.device
|
616 |
+
_, src_length = input_shape
|
617 |
+
|
618 |
+
if src_length > 1:
|
619 |
+
combined_attention_mask = _make_causal_mask(
|
620 |
+
input_shape, device=device, past_key_values_length=past_key_values_length
|
621 |
+
)
|
622 |
+
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
|
623 |
+
combined_attention_mask = (
|
624 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
625 |
+
)
|
626 |
+
|
627 |
+
return combined_attention_mask
|
628 |
+
|
629 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
630 |
+
self.word_embeddings = new_embeddings
|
631 |
+
|
632 |
+
def forward(
|
633 |
+
self,
|
634 |
+
input_ids: Optional[torch.LongTensor] = None,
|
635 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
636 |
+
attention_mask: Optional[torch.Tensor] = None,
|
637 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
638 |
+
use_cache: Optional[bool] = None,
|
639 |
+
output_attentions: Optional[bool] = None,
|
640 |
+
output_hidden_states: Optional[bool] = None,
|
641 |
+
return_dict: Optional[bool] = None,
|
642 |
+
**deprecated_arguments,
|
643 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
644 |
+
|
645 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
646 |
+
output_hidden_states = (
|
647 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
648 |
+
)
|
649 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
650 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
651 |
+
|
652 |
+
if input_ids is not None:
|
653 |
+
batch_size, seq_length = input_ids.shape
|
654 |
+
elif inputs_embeds is not None:
|
655 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
656 |
+
|
657 |
+
if past_key_values is None:
|
658 |
+
past_key_values = tuple([None] * len(self.h))
|
659 |
+
|
660 |
+
if inputs_embeds is None:
|
661 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
662 |
+
hidden_states = inputs_embeds
|
663 |
+
|
664 |
+
if self.config.embed_layernorm:
|
665 |
+
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
666 |
+
|
667 |
+
presents = () if use_cache else None
|
668 |
+
all_self_attentions = () if output_attentions else None
|
669 |
+
all_hidden_states = () if output_hidden_states else None
|
670 |
+
|
671 |
+
if self.gradient_checkpointing and self.training:
|
672 |
+
if use_cache:
|
673 |
+
use_cache = False
|
674 |
+
|
675 |
+
seq_length_with_past = seq_length
|
676 |
+
past_key_values_length = 0
|
677 |
+
if past_key_values[0] is not None:
|
678 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
679 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
680 |
+
if attention_mask is None:
|
681 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
682 |
+
else:
|
683 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
684 |
+
causal_mask = self._prepare_attn_mask(
|
685 |
+
attention_mask,
|
686 |
+
input_shape=(batch_size, seq_length),
|
687 |
+
past_key_values_length=past_key_values_length,
|
688 |
+
)
|
689 |
+
|
690 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
691 |
+
if output_hidden_states:
|
692 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
693 |
+
|
694 |
+
if self.gradient_checkpointing and self.training:
|
695 |
+
|
696 |
+
def create_custom_forward(module):
|
697 |
+
def custom_forward(*inputs):
|
698 |
+
# None for past_key_value
|
699 |
+
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
700 |
+
|
701 |
+
return custom_forward
|
702 |
+
|
703 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
704 |
+
create_custom_forward(block),
|
705 |
+
hidden_states,
|
706 |
+
causal_mask,
|
707 |
+
layer_past,
|
708 |
+
)
|
709 |
+
else:
|
710 |
+
outputs = block(
|
711 |
+
hidden_states,
|
712 |
+
layer_past=layer_past,
|
713 |
+
attention_mask=causal_mask,
|
714 |
+
use_cache=use_cache,
|
715 |
+
output_attentions=output_attentions,
|
716 |
+
)
|
717 |
+
|
718 |
+
hidden_states = outputs[0]
|
719 |
+
if use_cache is True:
|
720 |
+
presents = presents + (outputs[1],)
|
721 |
+
|
722 |
+
if output_attentions:
|
723 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
724 |
+
hidden_states = self.ln_f(hidden_states)
|
725 |
+
if output_hidden_states:
|
726 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
727 |
+
if not return_dict:
|
728 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
729 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
730 |
+
last_hidden_state=hidden_states,
|
731 |
+
past_key_values=presents,
|
732 |
+
hidden_states=all_hidden_states,
|
733 |
+
attentions=all_self_attentions,
|
734 |
+
)
|
735 |
+
|
736 |
+
|
737 |
+
class TelechatForCausalLM(TelechatPreTrainedModel):
|
738 |
+
# _tied_weights_keys = ["lm_head.weight"]
|
739 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
740 |
+
|
741 |
+
def __init__(self, config: TelechatConfig):
|
742 |
+
super().__init__(config)
|
743 |
+
self.transformer = TelechatModel(config)
|
744 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
745 |
+
self.post_init()
|
746 |
+
|
747 |
+
def get_output_embeddings(self):
|
748 |
+
return self.lm_head
|
749 |
+
|
750 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
751 |
+
self.lm_head = new_embeddings
|
752 |
+
|
753 |
+
def prepare_inputs_for_generation(
|
754 |
+
self,
|
755 |
+
input_ids: torch.LongTensor,
|
756 |
+
past_key_values: Optional[torch.Tensor] = None,
|
757 |
+
attention_mask: Optional[torch.Tensor] = None,
|
758 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
759 |
+
**kwargs,
|
760 |
+
) -> dict:
|
761 |
+
if past_key_values:
|
762 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
763 |
+
if inputs_embeds is not None and past_key_values is None:
|
764 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
765 |
+
else:
|
766 |
+
model_inputs = {"input_ids": input_ids}
|
767 |
+
|
768 |
+
model_inputs.update(
|
769 |
+
{
|
770 |
+
"past_key_values": past_key_values,
|
771 |
+
"use_cache": kwargs.get("use_cache"),
|
772 |
+
"attention_mask": attention_mask,
|
773 |
+
}
|
774 |
+
)
|
775 |
+
return model_inputs
|
776 |
+
|
777 |
+
def forward(
|
778 |
+
self,
|
779 |
+
input_ids: Optional[torch.LongTensor] = None,
|
780 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
781 |
+
attention_mask: Optional[torch.Tensor] = None,
|
782 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
783 |
+
labels: Optional[torch.Tensor] = None,
|
784 |
+
use_cache: Optional[bool] = None,
|
785 |
+
output_attentions: Optional[bool] = None,
|
786 |
+
output_hidden_states: Optional[bool] = None,
|
787 |
+
return_dict: Optional[bool] = None,
|
788 |
+
**deprecated_arguments,
|
789 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
790 |
+
|
791 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
792 |
+
|
793 |
+
transformer_outputs = self.transformer(
|
794 |
+
input_ids,
|
795 |
+
past_key_values=past_key_values,
|
796 |
+
attention_mask=attention_mask,
|
797 |
+
inputs_embeds=inputs_embeds,
|
798 |
+
use_cache=use_cache,
|
799 |
+
output_attentions=output_attentions,
|
800 |
+
output_hidden_states=output_hidden_states,
|
801 |
+
return_dict=return_dict,
|
802 |
+
)
|
803 |
+
hidden_states = transformer_outputs[0]
|
804 |
+
lm_logits = self.lm_head(hidden_states)
|
805 |
+
|
806 |
+
loss = None
|
807 |
+
if labels is not None:
|
808 |
+
labels = labels.to(lm_logits.device)
|
809 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
810 |
+
shift_labels = labels[..., 1:].contiguous()
|
811 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
812 |
+
loss_fct = CrossEntropyLoss()
|
813 |
+
loss = loss_fct(
|
814 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
815 |
+
)
|
816 |
+
|
817 |
+
if not return_dict:
|
818 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
819 |
+
return ((loss,) + output) if loss is not None else output
|
820 |
+
|
821 |
+
return CausalLMOutputWithCrossAttentions(
|
822 |
+
loss=loss,
|
823 |
+
logits=lm_logits,
|
824 |
+
past_key_values=transformer_outputs.past_key_values,
|
825 |
+
hidden_states=transformer_outputs.hidden_states,
|
826 |
+
attentions=transformer_outputs.attentions,
|
827 |
+
)
|
828 |
+
|
829 |
+
def chat(self, tokenizer, question: str = '', history: Union[List[Dict], History] = None, stream: bool = False,
|
830 |
+
generation_config: Optional[GenerationConfig] = None, **kwargs):
|
831 |
+
"""
|
832 |
+
Args:
|
833 |
+
tokenizer: the tokenizer of telechat
|
834 |
+
question: question which the model reply in this turn
|
835 |
+
history: history which will format the input for telechat
|
836 |
+
stream: if return the full text at last or yield the text in token
|
837 |
+
generation_config: configuration for generation
|
838 |
+
**kwargs: args which will update the generation config or pass to model forward
|
839 |
+
"""
|
840 |
+
generation_config = generation_config or self.generation_config
|
841 |
+
if not generation_config:
|
842 |
+
logger.error("generation_config is None")
|
843 |
+
raise ValueError("generation_config must not be None")
|
844 |
+
if not question:
|
845 |
+
logger.error("question is empty")
|
846 |
+
raise ValueError("question must not be empty")
|
847 |
+
if history is None:
|
848 |
+
history = []
|
849 |
+
|
850 |
+
# we update and check generate_config here for building inputs.
|
851 |
+
|
852 |
+
generation_config = copy.deepcopy(generation_config)
|
853 |
+
user_id = generation_config.user_token_id
|
854 |
+
bot_id = generation_config.bot_token_id
|
855 |
+
model_kwargs = generation_config.update(**kwargs)
|
856 |
+
generation_config.validate()
|
857 |
+
|
858 |
+
# transfer to History
|
859 |
+
if not isinstance(history, History):
|
860 |
+
history = History(tokenizer, history)
|
861 |
+
|
862 |
+
inputs = self.build_inputs_for_chat(tokenizer, question, history, generation_config, user_id, bot_id)
|
863 |
+
history.append({"role": "user", "content": question})
|
864 |
+
if stream:
|
865 |
+
streamer = TelechatIterTextStreamer(tokenizer, history,skip_prompt=True)
|
866 |
+
Thread(target=self.generate, kwargs=dict(
|
867 |
+
inputs=inputs.to(self.device), streamer=streamer,
|
868 |
+
generation_config=generation_config, **model_kwargs
|
869 |
+
)).start()
|
870 |
+
return streamer
|
871 |
+
else:
|
872 |
+
outputs = self.generate(inputs.to(self.device), generation_config=generation_config, **model_kwargs)
|
873 |
+
response = tokenizer.decode(outputs[0][len(inputs[0]):-1])
|
874 |
+
history.append({"role": "bot", "content": response})
|
875 |
+
return response, history
|
876 |
+
|
877 |
+
def build_inputs_for_chat(self, tokenizer, question, history, generation_config, usr_id, bot_id):
|
878 |
+
"""
|
879 |
+
check history and build inputs here
|
880 |
+
"""
|
881 |
+
# first tokenize question
|
882 |
+
q_token = tokenizer(question)
|
883 |
+
qa_history = copy.deepcopy(history)
|
884 |
+
|
885 |
+
# get the max length we should build our inputs in
|
886 |
+
model_max_length = self.config.seq_length
|
887 |
+
build_max_length = max(0, model_max_length - generation_config.max_new_tokens) \
|
888 |
+
if generation_config.max_new_tokens else max(0, generation_config.max_length)
|
889 |
+
if build_max_length < 3:
|
890 |
+
logger.warning("the model can not meet the requirements of input length,Please check config")
|
891 |
+
raise ValueError("")
|
892 |
+
|
893 |
+
# trunc left
|
894 |
+
input_tokens = [usr_id] + q_token["input_ids"][-build_max_length + 1:] + [bot_id]
|
895 |
+
length = len(input_tokens)
|
896 |
+
|
897 |
+
while len(qa_history) != 0:
|
898 |
+
message = qa_history.pop()
|
899 |
+
if message["role"] == "user":
|
900 |
+
tokens = [usr_id] + message["input_ids"]
|
901 |
+
elif message["role"] == "bot":
|
902 |
+
tokens = [bot_id] + message["input_ids"] + [generation_config.eos_token_id]
|
903 |
+
else:
|
904 |
+
tokens = []
|
905 |
+
if len(tokens) + length >= build_max_length:
|
906 |
+
break
|
907 |
+
else:
|
908 |
+
input_tokens = tokens + input_tokens
|
909 |
+
|
910 |
+
return torch.tensor([input_tokens], dtype=torch.int64)
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata": {"total_size": 24772864000}, "weight_map": {"lm_head.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.0.input_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.0.mlp.down_proj.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.0.mlp.down_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.0.mlp.gate_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.0.mlp.up_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.0.post_attention_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.0.self_attention.dense.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.0.self_attention.dense.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.0.self_attention.key_value.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.0.self_attention.query.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.1.input_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.1.mlp.down_proj.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.1.mlp.down_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.1.mlp.gate_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.1.mlp.up_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.1.post_attention_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.1.self_attention.dense.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.1.self_attention.dense.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.1.self_attention.key_value.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.1.self_attention.query.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.10.input_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.10.mlp.down_proj.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.10.mlp.down_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.10.mlp.gate_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.10.mlp.up_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.10.post_attention_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.10.self_attention.dense.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.10.self_attention.dense.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.10.self_attention.key_value.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.10.self_attention.query.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.11.input_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.11.mlp.down_proj.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.11.mlp.down_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.11.mlp.gate_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.11.mlp.up_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.11.post_attention_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.11.self_attention.dense.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.11.self_attention.dense.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.11.self_attention.key_value.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.11.self_attention.query.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.12.input_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.12.mlp.down_proj.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.12.mlp.down_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.12.mlp.gate_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.12.mlp.up_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.12.post_attention_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.12.self_attention.dense.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.12.self_attention.dense.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.12.self_attention.key_value.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.12.self_attention.query.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.13.input_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.13.mlp.down_proj.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.13.mlp.down_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.13.mlp.gate_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.13.mlp.up_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.13.post_attention_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.13.self_attention.dense.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.13.self_attention.dense.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.13.self_attention.key_value.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.13.self_attention.query.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.14.input_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.14.mlp.down_proj.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.14.mlp.down_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.14.mlp.gate_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.14.mlp.up_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.14.post_attention_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.14.self_attention.dense.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.14.self_attention.dense.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.14.self_attention.key_value.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.14.self_attention.query.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.15.input_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.15.mlp.down_proj.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.15.mlp.down_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.15.mlp.gate_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.15.mlp.up_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.15.post_attention_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.15.self_attention.dense.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.15.self_attention.dense.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.15.self_attention.key_value.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.15.self_attention.query.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.16.input_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.16.mlp.down_proj.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.16.mlp.down_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.16.mlp.gate_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.16.mlp.up_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.16.post_attention_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.16.self_attention.dense.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.16.self_attention.dense.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.16.self_attention.key_value.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.16.self_attention.query.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.17.input_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.17.mlp.down_proj.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.17.mlp.down_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.17.mlp.gate_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.17.mlp.up_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.17.post_attention_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.17.self_attention.dense.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.17.self_attention.dense.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.17.self_attention.key_value.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.17.self_attention.query.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.18.input_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.18.mlp.down_proj.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.18.mlp.down_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.18.mlp.gate_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.18.mlp.up_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.18.post_attention_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.18.self_attention.dense.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.18.self_attention.dense.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.18.self_attention.key_value.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.18.self_attention.query.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.19.input_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.19.mlp.down_proj.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.19.mlp.down_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.19.mlp.gate_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.19.mlp.up_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.19.post_attention_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.19.self_attention.dense.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.19.self_attention.dense.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.19.self_attention.key_value.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.19.self_attention.query.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.2.input_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.2.mlp.down_proj.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.2.mlp.down_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.2.mlp.gate_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.2.mlp.up_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.2.post_attention_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.2.self_attention.dense.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.2.self_attention.dense.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.2.self_attention.key_value.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.2.self_attention.query.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.20.input_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.20.mlp.down_proj.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.20.mlp.down_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.20.mlp.gate_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.20.mlp.up_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.20.post_attention_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.20.self_attention.dense.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.20.self_attention.dense.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.20.self_attention.key_value.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.20.self_attention.query.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.21.input_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.21.mlp.down_proj.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.21.mlp.down_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.21.mlp.gate_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.21.mlp.up_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.21.post_attention_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.21.self_attention.dense.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.21.self_attention.dense.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.21.self_attention.key_value.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.21.self_attention.query.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.22.input_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.22.mlp.down_proj.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.22.mlp.down_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.22.mlp.gate_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.22.mlp.up_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.22.post_attention_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.22.self_attention.dense.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.22.self_attention.dense.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.22.self_attention.key_value.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.22.self_attention.query.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.23.input_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.23.mlp.down_proj.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.23.mlp.down_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.23.mlp.gate_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.23.mlp.up_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.23.post_attention_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.23.self_attention.dense.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.23.self_attention.dense.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.23.self_attention.key_value.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.23.self_attention.query.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.24.input_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.24.mlp.down_proj.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.24.mlp.down_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.24.mlp.gate_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.24.mlp.up_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.24.post_attention_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.24.self_attention.dense.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.24.self_attention.dense.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.24.self_attention.key_value.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.24.self_attention.query.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.25.input_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.25.mlp.down_proj.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.25.mlp.down_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.25.mlp.gate_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.25.mlp.up_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.25.post_attention_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.25.self_attention.dense.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.25.self_attention.dense.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.25.self_attention.key_value.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.25.self_attention.query.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.26.input_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.26.mlp.down_proj.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.26.mlp.down_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.26.mlp.gate_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.26.mlp.up_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.26.post_attention_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.26.self_attention.dense.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.26.self_attention.dense.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.26.self_attention.key_value.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.26.self_attention.query.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.27.input_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.27.mlp.down_proj.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.27.mlp.down_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.27.mlp.gate_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.27.mlp.up_proj.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.27.post_attention_layernorm.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.27.self_attention.dense.bias": "pytorch_model_00003-of-00004.bin", "transformer.h.27.self_attention.dense.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.27.self_attention.key_value.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.27.self_attention.query.weight": "pytorch_model_00003-of-00004.bin", "transformer.h.28.input_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.28.mlp.down_proj.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.28.mlp.down_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.28.mlp.gate_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.28.mlp.up_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.28.post_attention_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.28.self_attention.dense.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.28.self_attention.dense.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.28.self_attention.key_value.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.28.self_attention.query.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.29.input_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.29.mlp.down_proj.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.29.mlp.down_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.29.mlp.gate_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.29.mlp.up_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.29.post_attention_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.29.self_attention.dense.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.29.self_attention.dense.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.29.self_attention.key_value.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.29.self_attention.query.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.3.input_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.3.mlp.down_proj.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.3.mlp.down_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.3.mlp.gate_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.3.mlp.up_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.3.post_attention_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.3.self_attention.dense.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.3.self_attention.dense.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.3.self_attention.key_value.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.3.self_attention.query.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.30.input_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.30.mlp.down_proj.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.30.mlp.down_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.30.mlp.gate_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.30.mlp.up_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.30.post_attention_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.30.self_attention.dense.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.30.self_attention.dense.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.30.self_attention.key_value.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.30.self_attention.query.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.31.input_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.31.mlp.down_proj.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.31.mlp.down_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.31.mlp.gate_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.31.mlp.up_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.31.post_attention_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.31.self_attention.dense.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.31.self_attention.dense.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.31.self_attention.key_value.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.31.self_attention.query.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.32.input_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.32.mlp.down_proj.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.32.mlp.down_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.32.mlp.gate_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.32.mlp.up_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.32.post_attention_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.32.self_attention.dense.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.32.self_attention.dense.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.32.self_attention.key_value.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.32.self_attention.query.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.33.input_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.33.mlp.down_proj.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.33.mlp.down_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.33.mlp.gate_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.33.mlp.up_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.33.post_attention_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.33.self_attention.dense.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.33.self_attention.dense.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.33.self_attention.key_value.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.33.self_attention.query.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.34.input_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.34.mlp.down_proj.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.34.mlp.down_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.34.mlp.gate_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.34.mlp.up_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.34.post_attention_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.34.self_attention.dense.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.34.self_attention.dense.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.34.self_attention.key_value.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.34.self_attention.query.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.35.input_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.35.mlp.down_proj.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.35.mlp.down_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.35.mlp.gate_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.35.mlp.up_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.35.post_attention_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.35.self_attention.dense.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.35.self_attention.dense.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.35.self_attention.key_value.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.35.self_attention.query.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.36.input_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.36.mlp.down_proj.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.36.mlp.down_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.36.mlp.gate_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.36.mlp.up_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.36.post_attention_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.36.self_attention.dense.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.36.self_attention.dense.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.36.self_attention.key_value.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.36.self_attention.query.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.37.input_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.37.mlp.down_proj.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.37.mlp.down_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.37.mlp.gate_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.37.mlp.up_proj.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.37.post_attention_layernorm.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.37.self_attention.dense.bias": "pytorch_model_00004-of-00004.bin", "transformer.h.37.self_attention.dense.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.37.self_attention.key_value.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.37.self_attention.query.weight": "pytorch_model_00004-of-00004.bin", "transformer.h.4.input_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.4.mlp.down_proj.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.4.mlp.down_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.4.mlp.gate_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.4.mlp.up_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.4.post_attention_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.4.self_attention.dense.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.4.self_attention.dense.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.4.self_attention.key_value.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.4.self_attention.query.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.5.input_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.5.mlp.down_proj.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.5.mlp.down_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.5.mlp.gate_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.5.mlp.up_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.5.post_attention_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.5.self_attention.dense.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.5.self_attention.dense.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.5.self_attention.key_value.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.5.self_attention.query.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.6.input_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.6.mlp.down_proj.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.6.mlp.down_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.6.mlp.gate_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.6.mlp.up_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.6.post_attention_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.6.self_attention.dense.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.6.self_attention.dense.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.6.self_attention.key_value.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.6.self_attention.query.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.7.input_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.7.mlp.down_proj.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.7.mlp.down_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.7.mlp.gate_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.7.mlp.up_proj.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.7.post_attention_layernorm.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.7.self_attention.dense.bias": "pytorch_model_00001-of-00004.bin", "transformer.h.7.self_attention.dense.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.7.self_attention.key_value.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.7.self_attention.query.weight": "pytorch_model_00001-of-00004.bin", "transformer.h.8.input_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.8.mlp.down_proj.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.8.mlp.down_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.8.mlp.gate_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.8.mlp.up_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.8.post_attention_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.8.self_attention.dense.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.8.self_attention.dense.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.8.self_attention.key_value.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.8.self_attention.query.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.9.input_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.9.mlp.down_proj.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.9.mlp.down_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.9.mlp.gate_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.9.mlp.up_proj.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.9.post_attention_layernorm.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.9.self_attention.dense.bias": "pytorch_model_00002-of-00004.bin", "transformer.h.9.self_attention.dense.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.9.self_attention.key_value.weight": "pytorch_model_00002-of-00004.bin", "transformer.h.9.self_attention.query.weight": "pytorch_model_00002-of-00004.bin", "transformer.ln_f.weight": "pytorch_model_00004-of-00004.bin", "transformer.word_embeddings.weight": "pytorch_model_00001-of-00004.bin"}}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenization_telechat.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from shutil import copyfile
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple
|
4 |
+
import sentencepiece as spm
|
5 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
11 |
+
|
12 |
+
# TODO: when we get download url from huggingface, refresh the map
|
13 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
14 |
+
"vocab_file": {},
|
15 |
+
"tokenizer_file": {},
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
class TelechatTokenizer(PreTrainedTokenizer):
|
20 |
+
|
21 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
22 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
23 |
+
model_input_names = ["input_ids", "attention_mask"]
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
vocab_file,
|
28 |
+
unk_token="<unk>",
|
29 |
+
bos_token="<_start>",
|
30 |
+
eos_token="<_end>",
|
31 |
+
pad_token="<_pad>",
|
32 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
33 |
+
add_bos_token=True,
|
34 |
+
add_eos_token=False,
|
35 |
+
clean_up_tokenization_spaces=False,
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
39 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
40 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
41 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
42 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
43 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
44 |
+
self.sp_model.Load(vocab_file)
|
45 |
+
super().__init__(
|
46 |
+
bos_token=bos_token,
|
47 |
+
eos_token=eos_token,
|
48 |
+
unk_token=unk_token,
|
49 |
+
pad_token=pad_token,
|
50 |
+
add_bos_token=add_bos_token,
|
51 |
+
add_eos_token=add_eos_token,
|
52 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
53 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
54 |
+
**kwargs,
|
55 |
+
)
|
56 |
+
self.vocab_file = vocab_file
|
57 |
+
self.add_bos_token = add_bos_token
|
58 |
+
self.add_eos_token = add_eos_token
|
59 |
+
|
60 |
+
|
61 |
+
def __getstate__(self):
|
62 |
+
state = self.__dict__.copy()
|
63 |
+
state["sp_model"] = None
|
64 |
+
return state
|
65 |
+
|
66 |
+
def __setstate__(self, d):
|
67 |
+
self.__dict__ = d
|
68 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
69 |
+
self.sp_model.Load(self.vocab_file)
|
70 |
+
|
71 |
+
@property
|
72 |
+
def vocab_size(self):
|
73 |
+
"""Returns vocab size"""
|
74 |
+
return self.sp_model.get_piece_size()
|
75 |
+
|
76 |
+
def get_vocab(self):
|
77 |
+
"""Returns vocab as a dict"""
|
78 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
79 |
+
vocab.update(self.added_tokens_encoder)
|
80 |
+
return vocab
|
81 |
+
|
82 |
+
def _tokenize(self, text):
|
83 |
+
"""Returns a tokenized string."""
|
84 |
+
return self.sp_model.encode(text, out_type=str)
|
85 |
+
|
86 |
+
def _convert_token_to_id(self, token):
|
87 |
+
"""Converts a token (str) in an id using the vocab."""
|
88 |
+
return self.sp_model.piece_to_id(token)
|
89 |
+
|
90 |
+
def _convert_id_to_token(self, index):
|
91 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
92 |
+
token = self.sp_model.IdToPiece(index)
|
93 |
+
return token
|
94 |
+
|
95 |
+
def convert_tokens_to_string(self, tokens):
|
96 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
97 |
+
current_sub_tokens = []
|
98 |
+
out_string = ""
|
99 |
+
prev_is_special = False
|
100 |
+
for i, token in enumerate(tokens):
|
101 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
102 |
+
if token in self.all_special_tokens:
|
103 |
+
if not prev_is_special and i != 0:
|
104 |
+
out_string += " "
|
105 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
106 |
+
prev_is_special = True
|
107 |
+
current_sub_tokens = []
|
108 |
+
else:
|
109 |
+
current_sub_tokens.append(token)
|
110 |
+
prev_is_special = False
|
111 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
112 |
+
return out_string
|
113 |
+
|
114 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
115 |
+
"""
|
116 |
+
Save the vocabulary and special tokens file to a directory.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
save_directory (`str`):
|
120 |
+
The directory in which to save the vocabulary.
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
`Tuple(str)`: Paths to the files saved.
|
124 |
+
"""
|
125 |
+
if not os.path.isdir(save_directory):
|
126 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
127 |
+
return
|
128 |
+
out_vocab_file = os.path.join(
|
129 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
130 |
+
)
|
131 |
+
|
132 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
133 |
+
copyfile(self.vocab_file, out_vocab_file)
|
134 |
+
elif not os.path.isfile(self.vocab_file):
|
135 |
+
with open(out_vocab_file, "wb") as fi:
|
136 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
137 |
+
fi.write(content_spiece_model)
|
138 |
+
|
139 |
+
return (out_vocab_file,)
|
140 |
+
|
141 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
142 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
143 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
144 |
+
|
145 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
146 |
+
|
147 |
+
if token_ids_1 is not None:
|
148 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
149 |
+
|
150 |
+
return output
|
151 |
+
|
152 |
+
def get_special_tokens_mask(
|
153 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
154 |
+
) -> List[int]:
|
155 |
+
"""
|
156 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
157 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
token_ids_0 (`List[int]`):
|
161 |
+
List of IDs.
|
162 |
+
token_ids_1 (`List[int]`, *optional*):
|
163 |
+
Optional second list of IDs for sequence pairs.
|
164 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
165 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
169 |
+
"""
|
170 |
+
if already_has_special_tokens:
|
171 |
+
return super().get_special_tokens_mask(
|
172 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
173 |
+
)
|
174 |
+
|
175 |
+
bos_token_id = [1] if self.add_bos_token else []
|
176 |
+
eos_token_id = [1] if self.add_eos_token else []
|
177 |
+
|
178 |
+
if token_ids_1 is None:
|
179 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
180 |
+
return (
|
181 |
+
bos_token_id
|
182 |
+
+ ([0] * len(token_ids_0))
|
183 |
+
+ eos_token_id
|
184 |
+
+ bos_token_id
|
185 |
+
+ ([0] * len(token_ids_1))
|
186 |
+
+ eos_token_id
|
187 |
+
)
|
188 |
+
|
189 |
+
def create_token_type_ids_from_sequences(
|
190 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
191 |
+
) -> List[int]:
|
192 |
+
"""
|
193 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
194 |
+
sequence pair mask has the following format:
|
195 |
+
|
196 |
+
```
|
197 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
198 |
+
| first sequence | second sequence |
|
199 |
+
```
|
200 |
+
|
201 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
202 |
+
|
203 |
+
Args:
|
204 |
+
token_ids_0 (`List[int]`):
|
205 |
+
List of ids.
|
206 |
+
token_ids_1 (`List[int]`, *optional*):
|
207 |
+
Optional second list of IDs for sequence pairs.
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
211 |
+
"""
|
212 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
213 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
214 |
+
|
215 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
216 |
+
|
217 |
+
if token_ids_1 is not None:
|
218 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
219 |
+
|
220 |
+
return output
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2c86d881f9a94b1c50bf25f8f987accea9ec2a1be74529f0240d8e13e66aa3d
|
3 |
+
size 1978781
|
tokenizer_config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name_or_path": "ChinaTelecom/telechat-12b",
|
3 |
+
"tokenizer_class": "TelechatTokenizer",
|
4 |
+
"auto_map": {
|
5 |
+
"AutoTokenizer": [
|
6 |
+
"tokenization_telechat.TelechatTokenizer",
|
7 |
+
null
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"add_bos_token": false,
|
11 |
+
"add_eos_token": false,
|
12 |
+
"use_fast": false,
|
13 |
+
"clean_up_tokenization_spaces": false,
|
14 |
+
"eos_token": {
|
15 |
+
"__type": "AddedToken",
|
16 |
+
"content": "<_end>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": true,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": true
|
21 |
+
},
|
22 |
+
"model_max_length": 100000000,
|
23 |
+
"sp_model_kwargs": {},
|
24 |
+
"pad_token": {
|
25 |
+
"__type": "AddedToken",
|
26 |
+
"content": "<_pad>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": true,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": true
|
31 |
+
},
|
32 |
+
"unk_token": {
|
33 |
+
"__type": "AddedToken",
|
34 |
+
"content": "<_end>",
|
35 |
+
"lstrip": false,
|
36 |
+
"normalized": true,
|
37 |
+
"rstrip": false,
|
38 |
+
"single_word": true
|
39 |
+
}
|
40 |
+
}
|