shunxing1234 commited on
Commit
69c596e
1 Parent(s): 521e98b

Upload 4 files

Browse files
configuration_telechat2.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Telechat configuration"""
17
+
18
+ from packaging import version
19
+ from collections import OrderedDict
20
+ from transformers.utils import is_torch_available, logging
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from typing import TYPE_CHECKING, Any, List, Mapping, Optional
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+ class Telechat2Config(PretrainedConfig):
27
+ """
28
+ Args:
29
+ vocab_size (`int`, *optional*, defaults to 160256): Vocabulary size of the Telechat model.
30
+ hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states.
31
+ ffn_hidden_size (`int`, *optional*, defaults to 12288): Dimensionality of the feed-forward hidden states.
32
+ n_layer (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer
33
+ n_head (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer.
34
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers.
35
+ initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
36
+ apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
37
+ hidden_dropout (`float`, *optional*, defaults to 0.0): Dropout rate of the dropout function on the bias dropout.
38
+ attention_dropout (`float`, *optional*, defaults to 0.0): Dropout rate applied to the attention probs
39
+ use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions.
40
+ training_seqlen (`int`, *optional*, defaults to 8192): Sequence length during last finetuning.
41
+ logn (`bool`, *optional*, defaults to `True`): Whether or not to use logN during extrapolation.
42
+ embed_layernorm (`bool`, *optional*, defaults to `True`): Whether or not to use embedding layernorm.
43
+
44
+ """
45
+
46
+ model_type = "telechat"
47
+ keys_to_ignore_at_inference = ["past_key_values"]
48
+ attribute_map = {
49
+ "num_hidden_layers": "n_layer",
50
+ "num_attention_heads": "n_head",
51
+ }
52
+
53
+ def __init__(
54
+ self,
55
+ vocab_size=160256,
56
+ hidden_size=4096,
57
+ n_layer=30,
58
+ n_head=32,
59
+ layer_norm_epsilon=1e-5,
60
+ initializer_range=0.02,
61
+ use_cache=True,
62
+ bos_token_id=1,
63
+ eos_token_id=2,
64
+ apply_residual_connection_post_layernorm=False,
65
+ hidden_dropout=0.0,
66
+ attention_dropout=0.0,
67
+ ffn_hidden_size=12288,
68
+ training_seqlen = 8192,
69
+ logn = True,
70
+ embed_layernorm = False,
71
+ **kwargs,
72
+ ):
73
+ self.vocab_size = vocab_size
74
+ n_embed = kwargs.pop("n_embed", None)
75
+ self.hidden_size = hidden_size if n_embed is None else n_embed
76
+ self.n_layer = n_layer
77
+ self.n_head = n_head
78
+ self.layer_norm_epsilon = layer_norm_epsilon
79
+ self.initializer_range = initializer_range
80
+ self.use_cache = use_cache
81
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
82
+ self.hidden_dropout = hidden_dropout
83
+ self.attention_dropout = attention_dropout
84
+ self.bos_token_id = bos_token_id
85
+ self.eos_token_id = eos_token_id
86
+ self.logn = logn
87
+ self.ffn_hidden_size = ffn_hidden_size
88
+ self.training_seqlen = training_seqlen
89
+ self.embed_layernorm = embed_layernorm
90
+ self.num_key_value_heads= kwargs.pop("num_key_value_heads", None)
91
+
92
+
93
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
94
+
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "max_new_tokens": 1000,
3
+ "do_sample": false,
4
+ "use_cache": true,
5
+ "temperature": 0.3,
6
+ "top_k": 5,
7
+ "top_p": 0.85,
8
+ "repetition_penalty": 1.02,
9
+ "pad_token_id": 3,
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "user_token_id": 4,
13
+ "bot_token_id": 5,
14
+ "start_token_id": 1
15
+ }
generation_utils.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ from collections import deque
3
+ from queue import Queue
4
+ import copy
5
+
6
+
7
+ class History:
8
+
9
+ def __init__(self, tokenizer, history):
10
+ '''
11
+ init from a list of dict
12
+ '''
13
+ # use deque to meet some special situation
14
+ self.input_history = deque()
15
+ self.tokenizer = tokenizer
16
+ if history:
17
+ self._transfer_from_list(history)
18
+
19
+ def _transfer_from_list(self, history):
20
+ for message in history:
21
+ content = message.get("content")
22
+ # the token result may not be equal to the result model gen
23
+ message.update(self.tokenizer(content))
24
+ self.input_history.append(message)
25
+
26
+ def append(self, message):
27
+ content = message.get("content")
28
+ if "input_ids" not in message or "attention_mask" not in message:
29
+ message.update(self.tokenizer(content))
30
+ self.input_history.append(message)
31
+
32
+ def append_left(self, message):
33
+ content = message.get("content")
34
+ if "input_ids" not in message or "attention_mask" not in message:
35
+ message.update(self.tokenizer(content))
36
+ self.input_history.appendleft(message)
37
+
38
+ def pop(self):
39
+ x = self.input_history.pop()
40
+ return x
41
+
42
+ def pop_left(self):
43
+ x = self.pop_left()
44
+ return x
45
+
46
+ def update(self, message):
47
+ self.input_history.pop()
48
+ self.append(message)
49
+
50
+ def __len__(self):
51
+ return self.input_history.__len__()
52
+
53
+ def __str__(self):
54
+ return self.input_history.__str__()
55
+
56
+ def __copy__(self):
57
+ new_instance = type(self)(self.tokenizer, [])
58
+ new_instance.input_history = copy.copy(self.input_history)
59
+ return new_instance
60
+
61
+ def __deepcopy__(self, memodict={}):
62
+ new_instance = type(self)(self.tokenizer, [])
63
+ new_instance.input_history = copy.deepcopy(self.input_history)
64
+ return new_instance
65
+
66
+
67
+ class TelechatIterTextStreamer:
68
+ """
69
+ With reference to the TextIterStreamers in transformers, we have rewritten this class
70
+ """
71
+
72
+ def __init__(
73
+ self, tokenizer, history: History = None, skip_prompt: bool = False, timeout: Optional[float] = None,
74
+ **decode_kwargs
75
+ ):
76
+
77
+ self.tokenizer = tokenizer
78
+ self.history = history
79
+ self.skip_prompt = skip_prompt
80
+ self.timeout = timeout
81
+ self.decode_kwargs = decode_kwargs
82
+
83
+ self.text_queue = Queue()
84
+ self.cache_time = 0
85
+ self.text_until = ""
86
+ self.token_until = []
87
+ self.stop_signal = None
88
+ self.next_tokens_are_prompt = True
89
+
90
+ self.history.append({"role": "bot", "content": self.text_until})
91
+
92
+ def put(self, value):
93
+ """
94
+ put printable text into queue
95
+ """
96
+ if len(value.shape) > 1 and value.shape[0] > 1:
97
+ raise ValueError("TextStreamer only supports batch size 1")
98
+ elif len(value.shape) > 1:
99
+ value = value[0]
100
+
101
+ if self.skip_prompt and self.next_tokens_are_prompt:
102
+ self.next_tokens_are_prompt = False
103
+ return
104
+
105
+ if value[-1] == self.tokenizer.eos_token_id:
106
+ return
107
+
108
+ # there may be some smart way to decode.
109
+ self.token_until.extend(value.tolist())
110
+ text = self.tokenizer.decode(self.token_until, **self.decode_kwargs)
111
+
112
+
113
+ if self._is_printable(text) or self.cache_time >= 6:
114
+ output_text = text[len(self.text_until):]
115
+ self.text_until = text
116
+
117
+ else:
118
+ self.cache_time+=1
119
+ return
120
+
121
+ self.on_finalized_text(output_text)
122
+
123
+ def end(self):
124
+ """Flushes any remaining cache and prints a newline to stdout."""
125
+ # Flush the cache, if it exists
126
+ text = self.tokenizer.decode(self.token_until, **self.decode_kwargs)
127
+ output_text = text[len(self.text_until):]
128
+ self.text_until = text
129
+ self.on_finalized_text(output_text, stream_end=True)
130
+ self.clear_cache()
131
+
132
+ def clear_cache(self):
133
+ self.cache_time = 0
134
+ self.token_until = []
135
+ self.text_until = ""
136
+ self.history = None
137
+ self.next_tokens_are_prompt = True
138
+
139
+ def on_finalized_text(self, text: str, stream_end: bool = False):
140
+ """Put the text tuple in the queue."""
141
+ self.history.update({"role": "bot", "content": self.text_until, "input_ids": self.token_until,
142
+ "attention_mask": [1] * len(self.token_until)})
143
+ self.text_queue.put((text, self.history), timeout=self.timeout)
144
+ if stream_end:
145
+ self.text_queue.put((self.stop_signal, self.history), timeout=self.timeout)
146
+
147
+ @staticmethod
148
+ def _is_printable(cp):
149
+ """Checks whether tokens can be decoded or not"""
150
+ if "�" in cp:
151
+ return False
152
+ return True
153
+
154
+ def __iter__(self):
155
+ return self
156
+
157
+ def __next__(self):
158
+ value_now, history_until = self.text_queue.get(timeout=self.timeout)
159
+ if value_now == self.stop_signal:
160
+ raise StopIteration()
161
+ else:
162
+ return value_now, history_until
modeling_telechat2.py ADDED
@@ -0,0 +1,854 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 HuggingFace Inc. team and BigScience workshop.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
17
+
18
+ # Copyright (c) 2021 EleutherAI
19
+ # This file is based on code by the authors denoted below and has been modified from its original version.
20
+ #
21
+ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
22
+ #
23
+ # Licensed under the Apache License, Version 2.0 (the "License");
24
+ # you may not use this file except in compliance with the License.
25
+ # You may obtain a copy of the License at
26
+ #
27
+ # http://www.apache.org/licenses/LICENSE-2.0
28
+ #
29
+ # Unless required by applicable law or agreed to in writing, software
30
+ # distributed under the License is distributed on an "AS IS" BASIS,
31
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
32
+ # See the License for the specific language governing permissions and
33
+ # limitations under the License.
34
+
35
+
36
+ """PyTorch TELECHAT model."""
37
+
38
+ import warnings
39
+ from typing import Optional, Tuple, Union, List, Dict
40
+ from threading import Thread
41
+
42
+ import torch
43
+ import math
44
+ import copy
45
+ from torch import nn
46
+ import torch.utils.checkpoint
47
+ from torch.nn import functional as F
48
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
49
+ from transformers.modeling_outputs import (
50
+ BaseModelOutputWithPastAndCrossAttentions,
51
+ CausalLMOutputWithCrossAttentions
52
+ )
53
+ from transformers.modeling_utils import PreTrainedModel
54
+ from transformers.utils import logging
55
+ from transformers import GenerationConfig
56
+
57
+ from .configuration_telechat2 import Telechat2Config
58
+
59
+
60
+ logger = logging.get_logger(__name__)
61
+
62
+ _CHECKPOINT_FOR_DOC = "telechat"
63
+ _CONFIG_FOR_DOC = "Telechat2Config"
64
+
65
+ TELECHAT_PRETRAINED_MODEL_ARCHIVE_LIST = []
66
+
67
+ try:
68
+ from einops import rearrange
69
+ except ImportError:
70
+ rearrange = None
71
+
72
+ use_flash_attn = True
73
+ try:
74
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func
75
+ except ImportError:
76
+ try:
77
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func
78
+ except ImportError:
79
+ flash_attn_unpadded_func = None
80
+
81
+
82
+ class RotaryEmbedding(torch.nn.Module):
83
+ # Extracted from: https://github.com/EleutherAI/gpt-neox
84
+ def __init__(self, dim, config, base=10000, precision=torch.half):
85
+ super().__init__()
86
+ self.config = config
87
+ self.dim = dim
88
+ self.base = base
89
+ self.inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float().half() / dim)).cuda()
90
+ self.max_seq_len_cached = None
91
+ self.cos_cached = None
92
+ self.sin_cached = None
93
+ self.precision = precision
94
+
95
+ def get_mscale(self, scale=1):
96
+ if scale <= 1:
97
+ return 1.0
98
+ return 0.1 * math.log(scale) + 1.0
99
+
100
+ def get_ntk_alpha(self, true_seq_len):
101
+ context_value = math.log(true_seq_len / self.config.base_seqlen, 2) + 1
102
+ # ntk_alpha = 2 ** context_value - 1
103
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
104
+ ntk_alpha = max(ntk_alpha, 1)
105
+ return ntk_alpha
106
+
107
+ def forward(self, x, seq_dim=0, seq_len=None):
108
+ if seq_len is None:
109
+ seq_len = x.shape[seq_dim]
110
+ seq_len = max(seq_len, self.config.training_seqlen)
111
+ ntk_alpha = self.get_ntk_alpha(seq_len)
112
+ self.mscale = float(self.get_mscale(seq_len / self.config.training_seqlen))
113
+ if True:
114
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
115
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim))
116
+ self.max_seq_len_cached = seq_len
117
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
118
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
119
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
120
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
121
+ if self.precision == torch.bfloat16:
122
+ emb = emb.float()
123
+ # [sx, 1 (b * np), hn]
124
+ self.cos_cached = self.mscale * emb.cos()[:, None, :].half()
125
+ self.sin_cached = self.mscale * emb.sin()[:, None, :].half()
126
+ if self.precision == torch.bfloat16:
127
+ self.cos_cached = self.cos_cached.bfloat16()
128
+ self.sin_cached = self.sin_cached.bfloat16()
129
+ return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
130
+
131
+
132
+ # rotary pos emb helpers:
133
+ def rotate_half(x):
134
+ x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
135
+ return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
136
+
137
+
138
+ def apply_rotary_pos_emb_torch(q, k, cos, sin, offset: int = 0): # jitting fails with bf16
139
+ cos, sin = cos[offset:q.shape[0] + offset, ...], sin[offset:q.shape[0] + offset, ...]
140
+ return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
141
+
142
+
143
+ class MixedFusedRMSNorm(nn.Module):
144
+ # Extracted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
145
+ def __init__(self, hidden_size, eps=1e-6):
146
+ super().__init__()
147
+ self.weight = nn.Parameter(torch.ones(hidden_size))
148
+ self.variance_epsilon = eps
149
+
150
+ def forward(self, hidden_states):
151
+ input_dtype = hidden_states.dtype
152
+ hidden_states = hidden_states.to(torch.float32)
153
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
154
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
155
+ return self.weight * hidden_states.to(input_dtype)
156
+
157
+
158
+ class FlashSelfAttention(torch.nn.Module):
159
+ # Extracted from https://github.com/microsoft/Megatron-DeepSpeed/blob/main/megatron/model/transformer.py
160
+ """Implement the scaled dot product attention with softmax.
161
+ Arguments
162
+ ---------
163
+ softmax_scale: The temperature to use for the softmax attention.
164
+ (default: 1/sqrt(d_keys) where d_keys is computed at
165
+ runtime)
166
+ attention_dropout: The dropout rate to apply to the attention
167
+ (default: 0.0)
168
+ """
169
+
170
+ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
171
+ device=None, dtype=None):
172
+ super().__init__()
173
+ assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
174
+ 'e.g., with pip install flash-attn')
175
+ assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
176
+ self.causal = causal
177
+ self.softmax_scale = softmax_scale
178
+ self.dropout_p = attention_dropout
179
+
180
+ def forward(self, q, k, v):
181
+ """Implements the multihead softmax attention.
182
+ Arguments
183
+ ---------
184
+ q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
185
+ """
186
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
187
+ assert all((i.is_cuda for i in (q, k, v)))
188
+
189
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
190
+ seqlen_k = k.shape[1]
191
+
192
+ q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
193
+ cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
194
+ device=q.device)
195
+ self.training = False
196
+ if self.training:
197
+ # during training q,k,v always have same seqlen
198
+ assert seqlen_k == seqlen_q
199
+
200
+ is_causal = self.causal
201
+ cu_seqlens_k = cu_seqlens_q
202
+ dropout_p = self.dropout_p
203
+ else:
204
+ # turn off FA causal mask after first inference autoregressive iteration
205
+ # only on first autoregressive step q,k,v have same seqlen
206
+ is_causal = seqlen_q == seqlen_k
207
+ cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
208
+ device=q.device)
209
+ dropout_p = 0
210
+
211
+ output = flash_attn_unpadded_func(
212
+ q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
213
+ dropout_p=dropout_p,
214
+ softmax_scale=self.softmax_scale, causal=is_causal
215
+ )
216
+
217
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
218
+ return output
219
+
220
+
221
+ def _make_causal_mask(
222
+ input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
223
+ ) -> torch.BoolTensor:
224
+ """
225
+ Make causal mask used for self-attention.
226
+ """
227
+ batch_size, target_length = input_ids_shape
228
+ mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
229
+ # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
230
+ seq_ids = torch.arange(target_length, device=device)
231
+ mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
232
+
233
+ if past_key_values_length > 0:
234
+ mask[:, :past_key_values_length] = False
235
+
236
+ expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
237
+ return expanded_mask
238
+
239
+
240
+ def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
241
+ """
242
+ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
243
+ """
244
+ batch_size, src_length = mask.shape
245
+ tgt_length = tgt_length if tgt_length is not None else src_length
246
+
247
+ expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
248
+ return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
249
+
250
+
251
+ def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
252
+ """
253
+ Dropout add function
254
+
255
+ Args:
256
+ x (`torch.tensor`, *required*):
257
+ input tensor
258
+ residual (`torch.tensor`, *required*):
259
+ residual tensor
260
+ prob (`float`, *required*):
261
+ dropout probability
262
+ training (`bool`, *required*):
263
+ training mode
264
+ """
265
+ out = F.dropout(x, p=prob, training=training)
266
+ out = residual + out
267
+ return out
268
+
269
+
270
+ def telechat_gelu_forward(x: torch.Tensor) -> torch.Tensor:
271
+ """
272
+ Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
273
+ make the model jitable.
274
+
275
+ Args:
276
+ x (`torch.tensor`, *required*):
277
+ input hidden states
278
+ """
279
+ return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
280
+
281
+
282
+ def telechat_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
283
+ """
284
+ gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
285
+ 0.3989423 * x * torch.exp(-0.5 * x * x)
286
+
287
+ Args:
288
+ g (`torch.tensor`, *required*):
289
+ gradient output tensor
290
+ x (`torch.tensor`, *required*):
291
+ input tensor
292
+ """
293
+ x = x[0] # x is a tuple of 1 element, needs to unpack it first
294
+ tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
295
+ # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
296
+ ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
297
+ return ff * g
298
+
299
+
300
+ class GeLUFunction(torch.autograd.Function):
301
+ @staticmethod
302
+ def forward(ctx, input: torch.Tensor) -> torch.Tensor:
303
+ ctx.save_for_backward(input)
304
+ return telechat_gelu_forward(input)
305
+
306
+ @staticmethod
307
+ def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
308
+ input = ctx.saved_tensors
309
+ tmp = telechat_gelu_back(grad_output, input)
310
+ return tmp
311
+
312
+
313
+ class TelechatGelu(nn.Module):
314
+ """
315
+ TelechatBiasGelu wrapper function that make use of the simple function on inference mode to make the model
316
+ torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
317
+ copied from Megatron-DeepSpeed code and adapted for our needs
318
+
319
+ See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
320
+ """
321
+
322
+ def __init__(self):
323
+ super().__init__()
324
+
325
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
326
+ if self.training:
327
+ return GeLUFunction.apply(x)
328
+ else:
329
+ return telechat_gelu_forward(x)
330
+
331
+
332
+ class TelechatAttention(nn.Module):
333
+ def __init__(self, config: Telechat2Config, layer_idx):
334
+ super().__init__()
335
+ self.kv_cache = None
336
+ self.layer_idx = layer_idx
337
+
338
+ self.hidden_size = config.hidden_size
339
+ self.num_heads = config.n_head
340
+ self.head_dim = self.hidden_size // self.num_heads
341
+ self.split_size = self.hidden_size
342
+ self.hidden_dropout = config.hidden_dropout
343
+ self.config = config
344
+
345
+ if self.head_dim * self.num_heads != self.hidden_size:
346
+ raise ValueError(
347
+ f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
348
+ f" {self.num_heads})."
349
+ )
350
+
351
+ # Layer-wise attention scaling
352
+ self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
353
+ self.beta = 1.0
354
+
355
+ self.num_key_value_heads = config.num_key_value_heads if config.num_key_value_heads else self.num_heads
356
+ self.kv_projection_size = self.head_dim * self.num_key_value_heads
357
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
358
+ self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
359
+ self.key_value = nn.Linear(self.hidden_size, self.kv_projection_size * 2, bias=False)
360
+ self.dense = nn.Linear(self.hidden_size, self.hidden_size)
361
+ self.attention_dropout = nn.Dropout(config.attention_dropout)
362
+ self.rotary_emb = RotaryEmbedding(self.head_dim, config=config)
363
+
364
+ self.core_attention_flash = FlashSelfAttention(
365
+ causal=True, attention_dropout=config.attention_dropout
366
+ )
367
+
368
+ self.last_key_layer = None
369
+ # logn_list = [math.log(i, 4096) if i > 4096 else 1 for i in range(1, 32768)]
370
+ # self.logn_tensor = torch.tensor(logn_list)[None, :, None, None].half().cuda()
371
+
372
+ def repeat_kv(self, hidden_states, n_rep):
373
+ slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape
374
+ if n_rep == 1:
375
+ return hidden_states
376
+ hidden_states = hidden_states[:, :, :, None, :].expand(slen, batch, num_key_value_heads_per_partition, n_rep,
377
+ head_dim)
378
+ return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim)
379
+
380
+ def split_tensor_along_last_dim(self,
381
+ tensor: torch.Tensor,
382
+ num_partitions: int,
383
+ contiguous_split_chunks: bool = False,
384
+ ):
385
+
386
+ # Get the size and dimension.
387
+ last_dim = tensor.dim() - 1
388
+ last_dim_size = tensor.size()[last_dim] // num_partitions
389
+ # Split.
390
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
391
+ # Note: torch.split does not create contiguous tensors by default.
392
+ if contiguous_split_chunks:
393
+ return tuple(chunk.contiguous() for chunk in tensor_list)
394
+
395
+ return tensor_list
396
+
397
+ def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
398
+ batch_size_and_num_heads, seq_length, _ = x.shape
399
+ batch_size = batch_size_and_num_heads // self.num_heads
400
+ x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
401
+ x = x.permute(0, 2, 1, 3)
402
+ return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
403
+
404
+ def forward(
405
+ self,
406
+ hidden_states: torch.Tensor,
407
+ residual: torch.Tensor,
408
+ attention_mask: torch.Tensor,
409
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
410
+ use_cache: bool = False,
411
+ output_attentions: bool = False,
412
+ ):
413
+ hidden_states = hidden_states.transpose(1, 0)
414
+ query_layer = self.query(hidden_states)
415
+ new_tensor_shape = query_layer.size()[:-1] + \
416
+ (self.num_heads,
417
+ self.head_dim)
418
+ query_layer = query_layer.view(*new_tensor_shape)
419
+
420
+ mixed_kv_layer = self.key_value(hidden_states)
421
+ new_tensor_shape = mixed_kv_layer.size()[:-1] + \
422
+ (self.num_key_value_heads,
423
+ 2 * self.head_dim)
424
+ mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)
425
+ (key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2)
426
+
427
+ output_size = (query_layer.size(1),
428
+ query_layer.size(2),
429
+ query_layer.size(0),
430
+ key_layer.size(0),
431
+ key_layer.size(2)
432
+ )
433
+
434
+ query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
435
+ key_layer = key_layer.view(output_size[3], output_size[0] * output_size[4], -1)
436
+
437
+ apply_rotary_fn = apply_rotary_pos_emb_torch
438
+
439
+ seq_len = key_layer.shape[0]
440
+ offset = 0
441
+
442
+ if use_cache and layer_past != None:
443
+ past_key, past_value = layer_past
444
+ offset = past_key.shape[0]
445
+ seq_len += offset
446
+
447
+ cos, sin = self.rotary_emb(value_layer, seq_len=seq_len)
448
+
449
+ query_layer, key_layer = apply_rotary_fn(query_layer, key_layer, cos, sin, offset=offset)
450
+ if use_cache:
451
+ if layer_past != None:
452
+ past_key, past_value = layer_past
453
+ key_layer = torch.cat((past_key, key_layer[-1, ...].unsqueeze(0)), dim=0)
454
+ value_layer = torch.cat((past_value, value_layer[-1, ...].unsqueeze(0)), dim=0)
455
+ layer_past = key_layer, value_layer
456
+
457
+ s_value, bz, kv_head, dim = value_layer.shape
458
+ s_key = key_layer.shape[0]
459
+ s_query = query_layer.shape[0]
460
+ q_head = output_size[1]
461
+
462
+ query_layer = query_layer.reshape((s_query, bz, q_head, dim))
463
+ key_layer = key_layer.reshape((s_key, bz, kv_head, dim))
464
+
465
+ key_layer = self.repeat_kv(key_layer, self.num_key_value_groups)
466
+ value_layer = self.repeat_kv(value_layer, self.num_key_value_groups)
467
+
468
+ if self.config.flash_attn:
469
+ q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() for x in
470
+ (query_layer, key_layer, value_layer)]
471
+ context_layer = self.core_attention_flash(q, k, v)
472
+ context_layer = rearrange(context_layer, 'b s h d -> b s (h d)').contiguous()
473
+ else:
474
+ ##[sq, b, np, hn] -> [sq, b * np, hn]
475
+ query_layer = query_layer.reshape(s_query, bz * self.num_heads, dim)
476
+ # [sk, b, np, hn] -> [sk, b * np, hn]
477
+ key_layer = key_layer.reshape(s_key, bz * self.num_heads, dim)
478
+ matmul_result = self.inv_norm_factor * torch.einsum('bik,bkj->bij', query_layer.transpose(0, 1),
479
+ key_layer.transpose(0, 1).transpose(1, 2))
480
+
481
+ attention_scores = matmul_result.view(bz, self.num_heads, s_query, s_key)
482
+
483
+ input_dtype = attention_scores.dtype
484
+ if input_dtype == torch.float16:
485
+ attention_scores = attention_scores.to(torch.float)
486
+ attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
487
+ attention_probs = F.softmax(attn_weights, dim=-1).to(input_dtype) ##dtype = torch.float32
488
+ attention_probs = self.attention_dropout(attention_probs)
489
+ attention_probs_reshaped = attention_probs.view(bz * self.num_heads, s_query, s_key)
490
+
491
+ value_layer = value_layer.reshape(s_key, bz * self.num_heads, dim)
492
+ context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1))
493
+ context_layer = self._merge_heads(context_layer)
494
+ output_tensor = self.dense(context_layer)
495
+
496
+ output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
497
+ present = None
498
+ outputs = (output_tensor, present)
499
+ if output_attentions:
500
+ outputs += (attention_probs,)
501
+
502
+ return output_tensor, layer_past
503
+
504
+
505
+ class TelechatMLP(nn.Module):
506
+ def __init__(self, config: Telechat2Config):
507
+ super().__init__()
508
+ hidden_size = config.hidden_size
509
+ self.gate_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
510
+ self.up_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False)
511
+ self.down_proj = nn.Linear(config.ffn_hidden_size, hidden_size, bias=True)
512
+ self.hidden_dropout = config.hidden_dropout
513
+
514
+ def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
515
+ intermediate_output = self.down_proj(F.silu(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
516
+ output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
517
+ return output
518
+
519
+
520
+ class TelechatBlock(nn.Module):
521
+ def __init__(self, config: Telechat2Config, layer_idx):
522
+ super().__init__()
523
+ hidden_size = config.hidden_size
524
+
525
+ self.input_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
526
+ self.num_heads = config.n_head
527
+ self.layer_idx = layer_idx
528
+ self.self_attention = TelechatAttention(config, layer_idx)
529
+ self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon)
530
+
531
+ self.mlp = TelechatMLP(config)
532
+
533
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
534
+ self.hidden_dropout = config.hidden_dropout
535
+
536
+ def forward(
537
+ self,
538
+ hidden_states: torch.Tensor,
539
+ attention_mask: torch.Tensor,
540
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
541
+ use_cache: bool = False,
542
+ output_attentions: bool = False,
543
+ ):
544
+ layernorm_output = self.input_layernorm(hidden_states)
545
+ if self.apply_residual_connection_post_layernorm:
546
+ residual = layernorm_output
547
+ else:
548
+ residual = hidden_states
549
+
550
+ attn_outputs = self.self_attention(
551
+ layernorm_output,
552
+ residual,
553
+ layer_past=layer_past,
554
+ attention_mask=attention_mask,
555
+ use_cache=use_cache,
556
+ output_attentions=output_attentions,
557
+ )
558
+
559
+ attention_output = attn_outputs[0]
560
+ outputs = attn_outputs[1:]
561
+ layernorm_output = self.post_attention_layernorm(attention_output)
562
+
563
+ if self.apply_residual_connection_post_layernorm:
564
+ residual = layernorm_output
565
+ else:
566
+ residual = attention_output
567
+ output = self.mlp(layernorm_output, residual)
568
+
569
+ if use_cache:
570
+ outputs = (output,) + outputs
571
+ else:
572
+ outputs = (output,) + outputs[1:]
573
+
574
+ return outputs
575
+
576
+
577
+ class TelechatPreTrainedModel(PreTrainedModel):
578
+ config_class = Telechat2Config
579
+ base_model_prefix = "transformer"
580
+ supports_gradient_checkpointing = True
581
+ _no_split_modules = ["TelechatBlock"]
582
+ _skip_keys_device_placement = "past_key_values"
583
+
584
+ def __init__(self, *inputs, **kwargs):
585
+ super().__init__(*inputs, **kwargs)
586
+
587
+ def _init_weights(self, module: nn.Module):
588
+ """Initialize the weights."""
589
+ if isinstance(module, nn.Linear):
590
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
591
+ if module.bias is not None:
592
+ module.bias.data.zero_()
593
+
594
+ elif isinstance(module, nn.Embedding):
595
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
596
+ if module.padding_idx is not None:
597
+ module.weight.data[module.padding_idx].zero_()
598
+
599
+ elif isinstance(module, LayerNorm):
600
+ module.bias.data.zero_()
601
+ module.weight.data.fill_(1.0)
602
+
603
+ def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
604
+ if isinstance(module, TelechatModel):
605
+ module.gradient_checkpointing = value
606
+
607
+
608
+ class TelechatModel(TelechatPreTrainedModel):
609
+ def __init__(self, config: Telechat2Config):
610
+ super().__init__(config)
611
+
612
+ self.embed_dim = config.hidden_size
613
+ self.num_heads = config.n_head
614
+ self.config = config
615
+ self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
616
+ if self.config.embed_layernorm:
617
+ self.word_embeddings_layernorm = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
618
+
619
+ self.h = nn.ModuleList([TelechatBlock(config, _) for _ in range(config.num_hidden_layers)])
620
+ self.ln_f = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon)
621
+ self.gradient_checkpointing = False
622
+ self.post_init()
623
+
624
+ def get_input_embeddings(self):
625
+ return self.word_embeddings
626
+
627
+ def _prepare_attn_mask(
628
+ self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
629
+ ) -> torch.BoolTensor:
630
+ combined_attention_mask = None
631
+ device = attention_mask.device
632
+ _, src_length = input_shape
633
+
634
+ if src_length > 1:
635
+ combined_attention_mask = _make_causal_mask(
636
+ input_shape, device=device, past_key_values_length=past_key_values_length
637
+ )
638
+ expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
639
+ combined_attention_mask = (
640
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
641
+ )
642
+
643
+ return combined_attention_mask
644
+
645
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
646
+ self.word_embeddings = new_embeddings
647
+
648
+ def forward(
649
+ self,
650
+ input_ids: Optional[torch.LongTensor] = None,
651
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
652
+ attention_mask: Optional[torch.Tensor] = None,
653
+ inputs_embeds: Optional[torch.LongTensor] = None,
654
+ use_cache: Optional[bool] = None,
655
+ output_attentions: Optional[bool] = None,
656
+ output_hidden_states: Optional[bool] = None,
657
+ return_dict: Optional[bool] = None,
658
+ **deprecated_arguments,
659
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
660
+
661
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
662
+ output_hidden_states = (
663
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
664
+ )
665
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
666
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
667
+
668
+ if input_ids is not None:
669
+ batch_size, seq_length = input_ids.shape
670
+ elif inputs_embeds is not None:
671
+ batch_size, seq_length, _ = inputs_embeds.shape
672
+
673
+ if past_key_values is None:
674
+ past_key_values = tuple([None] * len(self.h))
675
+ # input_ids = torch.load("Megatron-LM-0624-3B/tensors/input_ids.pt").to(input_ids.device)
676
+ if inputs_embeds is None:
677
+ inputs_embeds = self.word_embeddings(input_ids)
678
+ hidden_states = inputs_embeds
679
+ # print(f"[INFO_Telechat]: inputs_embeds={inputs_embeds}")
680
+ if self.config.embed_layernorm:
681
+ hidden_states = self.word_embeddings_layernorm(inputs_embeds)
682
+
683
+ presents = () if use_cache else None
684
+ all_self_attentions = () if output_attentions else None
685
+ all_hidden_states = () if output_hidden_states else None
686
+
687
+ if self.gradient_checkpointing and self.training:
688
+ if use_cache:
689
+ use_cache = False
690
+
691
+ seq_length_with_past = seq_length
692
+ past_key_values_length = 0
693
+ if past_key_values[0] is not None:
694
+ past_key_values_length = past_key_values[0][0].shape[2]
695
+ seq_length_with_past = seq_length_with_past + past_key_values_length
696
+ if attention_mask is None:
697
+ attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
698
+ else:
699
+ attention_mask = attention_mask.to(hidden_states.device)
700
+ causal_mask = self._prepare_attn_mask(
701
+ attention_mask,
702
+ input_shape=(batch_size, seq_length),
703
+ past_key_values_length=past_key_values_length,
704
+ )
705
+
706
+ # print(f"[INFO_Telechat]: word_embeddings_layernorm={hidden_states}")
707
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
708
+ if output_hidden_states:
709
+ all_hidden_states = all_hidden_states + (hidden_states,)
710
+
711
+ if self.gradient_checkpointing and self.training:
712
+
713
+ def create_custom_forward(module):
714
+ def custom_forward(*inputs):
715
+ # None for past_key_value
716
+ return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
717
+
718
+ return custom_forward
719
+
720
+ outputs = torch.utils.checkpoint.checkpoint(
721
+ create_custom_forward(block),
722
+ hidden_states,
723
+ causal_mask,
724
+ layer_past,
725
+ )
726
+ else:
727
+ outputs = block(
728
+ hidden_states,
729
+ layer_past=layer_past,
730
+ attention_mask=causal_mask,
731
+ use_cache=use_cache,
732
+ output_attentions=output_attentions,
733
+ )
734
+
735
+ # print(f"[INFO_Telechat]: outputs{i}={outputs}")
736
+ hidden_states = outputs[0]
737
+ if use_cache is True:
738
+ presents = presents + (outputs[1],)
739
+
740
+ if output_attentions:
741
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
742
+ hidden_states = self.ln_f(hidden_states)
743
+ # print(f"[INFO_Telechat]: hidden_states={hidden_states}")
744
+ # ref = torch.load("Megatron-LM-0624-3B/tensors/final_layernorm.pt")
745
+ # print(hidden_states.squeeze()[2048:])
746
+ # print(ref.squeeze())
747
+ # print(torch.max(hidden_states.squeeze()[2048:] - ref.squeeze().to(hidden_states.device)))
748
+ # exit()
749
+ # print(ref.shape,hidden_states.shape)
750
+ # print(hidden_states)
751
+ # exit()
752
+ if output_hidden_states:
753
+ all_hidden_states = all_hidden_states + (hidden_states,)
754
+ if not return_dict:
755
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
756
+ return BaseModelOutputWithPastAndCrossAttentions(
757
+ last_hidden_state=hidden_states,
758
+ past_key_values=presents,
759
+ hidden_states=all_hidden_states,
760
+ attentions=all_self_attentions,
761
+ )
762
+
763
+
764
+ class Telechat2ForCausalLM(TelechatPreTrainedModel):
765
+ # _tied_weights_keys = ["lm_head.weight"]
766
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
767
+
768
+ def __init__(self, config: Telechat2Config):
769
+ super().__init__(config)
770
+ self.transformer = TelechatModel(config)
771
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
772
+ self.post_init()
773
+
774
+ def get_output_embeddings(self):
775
+ return self.lm_head
776
+
777
+ def set_output_embeddings(self, new_embeddings: torch.Tensor):
778
+ self.lm_head = new_embeddings
779
+
780
+ def prepare_inputs_for_generation(
781
+ self,
782
+ input_ids: torch.LongTensor,
783
+ past_key_values: Optional[torch.Tensor] = None,
784
+ attention_mask: Optional[torch.Tensor] = None,
785
+ inputs_embeds: Optional[torch.Tensor] = None,
786
+ **kwargs,
787
+ ) -> dict:
788
+ if past_key_values:
789
+ input_ids = input_ids[:, -1].unsqueeze(-1)
790
+ if inputs_embeds is not None and past_key_values is None:
791
+ model_inputs = {"inputs_embeds": inputs_embeds}
792
+ else:
793
+ model_inputs = {"input_ids": input_ids}
794
+
795
+ model_inputs.update(
796
+ {
797
+ "past_key_values": past_key_values,
798
+ "use_cache": kwargs.get("use_cache"),
799
+ "attention_mask": attention_mask,
800
+ }
801
+ )
802
+ return model_inputs
803
+
804
+ def forward(
805
+ self,
806
+ input_ids: Optional[torch.LongTensor] = None,
807
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
808
+ attention_mask: Optional[torch.Tensor] = None,
809
+ inputs_embeds: Optional[torch.Tensor] = None,
810
+ labels: Optional[torch.Tensor] = None,
811
+ use_cache: Optional[bool] = None,
812
+ output_attentions: Optional[bool] = None,
813
+ output_hidden_states: Optional[bool] = None,
814
+ return_dict: Optional[bool] = None,
815
+ **deprecated_arguments,
816
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
817
+
818
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
819
+
820
+ transformer_outputs = self.transformer(
821
+ input_ids,
822
+ past_key_values=past_key_values,
823
+ attention_mask=attention_mask,
824
+ inputs_embeds=inputs_embeds,
825
+ use_cache=use_cache,
826
+ output_attentions=output_attentions,
827
+ output_hidden_states=output_hidden_states,
828
+ return_dict=return_dict,
829
+ )
830
+ hidden_states = transformer_outputs[0]
831
+ lm_logits = self.lm_head(hidden_states)
832
+
833
+ loss = None
834
+ if labels is not None:
835
+ labels = labels.to(lm_logits.device)
836
+ shift_logits = lm_logits[..., :-1, :].contiguous()
837
+ shift_labels = labels[..., 1:].contiguous()
838
+ batch_size, seq_length, vocab_size = shift_logits.shape
839
+ loss_fct = CrossEntropyLoss()
840
+ loss = loss_fct(
841
+ shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
842
+ )
843
+
844
+ if not return_dict:
845
+ output = (lm_logits,) + transformer_outputs[1:]
846
+ return ((loss,) + output) if loss is not None else output
847
+
848
+ return CausalLMOutputWithCrossAttentions(
849
+ loss=loss,
850
+ logits=lm_logits,
851
+ past_key_values=transformer_outputs.past_key_values,
852
+ hidden_states=transformer_outputs.hidden_states,
853
+ attentions=transformer_outputs.attentions,
854
+ )