Telugu-LLM-Labs
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,200 +1,172 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
|
4 |
-
- unsloth
|
5 |
---
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
|
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
- **Shared by [optional]:** [More Information Needed]
|
24 |
-
- **Model type:** [More Information Needed]
|
25 |
-
- **Language(s) (NLP):** [More Information Needed]
|
26 |
-
- **License:** [More Information Needed]
|
27 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
-
|
|
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
|
45 |
-
|
|
|
|
|
46 |
|
47 |
-
|
48 |
|
49 |
-
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
|
|
|
58 |
|
59 |
-
|
|
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
[
|
64 |
|
65 |
-
|
|
|
|
|
66 |
|
67 |
-
|
68 |
|
69 |
-
|
70 |
|
71 |
-
## How to Get Started with the Model
|
72 |
|
73 |
-
|
74 |
|
75 |
-
[
|
76 |
-
|
77 |
-
## Training Details
|
78 |
-
|
79 |
-
### Training Data
|
80 |
-
|
81 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
82 |
-
|
83 |
-
[More Information Needed]
|
84 |
-
|
85 |
-
### Training Procedure
|
86 |
-
|
87 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
88 |
-
|
89 |
-
#### Preprocessing [optional]
|
90 |
-
|
91 |
-
[More Information Needed]
|
92 |
-
|
93 |
-
|
94 |
-
#### Training Hyperparameters
|
95 |
-
|
96 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
97 |
-
|
98 |
-
#### Speeds, Sizes, Times [optional]
|
99 |
-
|
100 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
101 |
-
|
102 |
-
[More Information Needed]
|
103 |
-
|
104 |
-
## Evaluation
|
105 |
-
|
106 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
107 |
-
|
108 |
-
### Testing Data, Factors & Metrics
|
109 |
-
|
110 |
-
#### Testing Data
|
111 |
-
|
112 |
-
<!-- This should link to a Dataset Card if possible. -->
|
113 |
-
|
114 |
-
[More Information Needed]
|
115 |
-
|
116 |
-
#### Factors
|
117 |
-
|
118 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
119 |
-
|
120 |
-
[More Information Needed]
|
121 |
-
|
122 |
-
#### Metrics
|
123 |
-
|
124 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
125 |
-
|
126 |
-
[More Information Needed]
|
127 |
-
|
128 |
-
### Results
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
#### Summary
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
## Model Examination [optional]
|
137 |
-
|
138 |
-
<!-- Relevant interpretability work for the model goes here -->
|
139 |
-
|
140 |
-
[More Information Needed]
|
141 |
-
|
142 |
-
## Environmental Impact
|
143 |
-
|
144 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
145 |
-
|
146 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
147 |
-
|
148 |
-
- **Hardware Type:** [More Information Needed]
|
149 |
-
- **Hours used:** [More Information Needed]
|
150 |
-
- **Cloud Provider:** [More Information Needed]
|
151 |
-
- **Compute Region:** [More Information Needed]
|
152 |
-
- **Carbon Emitted:** [More Information Needed]
|
153 |
-
|
154 |
-
## Technical Specifications [optional]
|
155 |
-
|
156 |
-
### Model Architecture and Objective
|
157 |
-
|
158 |
-
[More Information Needed]
|
159 |
-
|
160 |
-
### Compute Infrastructure
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
#### Hardware
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
#### Software
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
## Citation [optional]
|
173 |
-
|
174 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
175 |
-
|
176 |
-
**BibTeX:**
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
**APA:**
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
## Glossary [optional]
|
185 |
-
|
186 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
187 |
-
|
188 |
-
[More Information Needed]
|
189 |
-
|
190 |
-
## More Information [optional]
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## Model Card Authors [optional]
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## Model Card Contact
|
199 |
-
|
200 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
license_name: gemma-terms-of-use
|
4 |
+
license_link: https://ai.google.dev/gemma/terms
|
5 |
+
base_model: google/gemma-2b
|
6 |
+
datasets:
|
7 |
+
- ravithejads/samvaad-hi-filtered
|
8 |
+
- Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized
|
9 |
+
- Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized
|
10 |
+
- Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered
|
11 |
+
- Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered
|
12 |
+
- Telugu-LLM-Labs/marathi_alpaca_yahma_cleaned_filtered
|
13 |
+
- Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered
|
14 |
+
- Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered
|
15 |
+
- Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered
|
16 |
+
- abhinand/tamil-alpaca
|
17 |
+
- Tensoic/airoboros-3.2_kn
|
18 |
+
- Tensoic/gpt-teacher_kn
|
19 |
+
- VishnuPJ/Alpaca_Instruct_Malayalam
|
20 |
+
- Tensoic/Alpaca-Gujarati
|
21 |
+
- HydraIndicLM/punjabi_alpaca_52K
|
22 |
+
- HydraIndicLM/bengali_alpaca_dolly_67k
|
23 |
+
- OdiaGenAI/Odia_Alpaca_instructions_52k
|
24 |
+
- yahma/alpaca-cleaned
|
25 |
+
language:
|
26 |
+
- te
|
27 |
+
- en
|
28 |
+
- ta
|
29 |
+
- ml
|
30 |
+
- mr
|
31 |
+
- hi
|
32 |
+
- kn
|
33 |
+
- sd
|
34 |
+
- ne
|
35 |
+
- ur
|
36 |
+
- as
|
37 |
+
- gu
|
38 |
+
- bn
|
39 |
+
- pa
|
40 |
library_name: transformers
|
41 |
+
pipeline_tag: text-generation
|
|
|
42 |
---
|
43 |
|
44 |
+
# Indic-gemma-2b-finetuned-sft-Navarasa-2.0
|
45 |
+
|
46 |
+
This model is based on [google/gemma-2b](https://huggingface.co/google/gemma-2b) and hase been LoRA finetuned on 15 Indian languages and English language instruction datasets:
|
47 |
+
|
48 |
+
1. #### Hindi - [ravithejads/samvaad-hi-filtered](https://huggingface.co/datasets/ravithejads/samvaad-hi-filtered), [HydraIndicLM/hindi_alpaca_dolly_67k](https://huggingface.co/datasets/HydraIndicLM/hindi_alpaca_dolly_67k)(sampled)
|
49 |
+
2. #### Telugu - [Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized), [Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized)
|
50 |
+
3. #### Marathi - [Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered)
|
51 |
+
4. #### Urdu - [Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered)
|
52 |
+
5. #### Assamese - [Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered)
|
53 |
+
6. #### Konkani - [Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered)
|
54 |
+
7. #### Nepali - [Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered)
|
55 |
+
8. #### Sindhi - [Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered)
|
56 |
+
9. #### Tamil - [abhinand/tamil-alpaca](https://huggingface.co/datasets/abhinand/tamil-alpaca)
|
57 |
+
10. #### Kannada - [Tensoic/airoboros-3.2_kn](https://huggingface.co/datasets/Tensoic/airoboros-3.2_kn), [Tensoic/gpt-teacher_kn](https://huggingface.co/datasets/Tensoic/gpt-teacher_kn)
|
58 |
+
11. #### Malayalam - [VishnuPJ/Alpaca_Instruct_Malayalam](https://huggingface.co/datasets/VishnuPJ/Alpaca_Instruct_Malayalam)
|
59 |
+
12. #### Gujarati - [Tensoic/Alpaca-Gujarati](https://huggingface.co/datasets/Tensoic/Alpaca-Gujarati)
|
60 |
+
13. #### Punjabi - [HydraIndicLM/punjabi_alpaca_52K](https://huggingface.co/datasets/HydraIndicLM/punjabi_alpaca_52K)
|
61 |
+
14. #### Bengali - [HydraIndicLM/bengali_alpaca_dolly_67k](https://huggingface.co/datasets/HydraIndicLM/bengali_alpaca_dolly_67k)(alpaca filtered)
|
62 |
+
15. #### Odia - [OdiaGenAI/Odia_Alpaca_instructions_52k](https://huggingface.co/datasets/OdiaGenAI/Odia_Alpaca_instructions_52k), [OdiaGenAI/gpt-teacher-roleplay-odia-3k](https://huggingface.co/datasets/OdiaGenAI/gpt-teacher-roleplay-odia-3k)
|
63 |
+
16. #### English - [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned)
|
64 |
|
65 |
+
The model is finetuned using [unsloth](https://github.com/unslothai/unsloth) library and we provide inference code using the same for faster inference. Alternatively you can use HuggingFace Library for inference.
|
66 |
|
67 |
+
# Training Details:
|
68 |
|
69 |
+
The model is trained on approx 650K instruction samples.
|
70 |
+
1. GPU: 1 A100, 80GB
|
71 |
+
2. Time: 45 Hours
|
72 |
+
3. Platform: [E2E Networks](https://www.e2enetworks.com/)
|
73 |
+
# Installation
|
74 |
|
75 |
+
`!pip install -U xformers --index-url https://download.pytorch.org/whl/cu121`
|
76 |
+
`!pip install "unsloth[kaggle-new] @git+https://github.com/unslothai/unsloth.git@nightly"`
|
77 |
|
78 |
+
# Input Text Format
|
79 |
|
80 |
+
```
|
81 |
+
### Instruction: {instruction}
|
82 |
|
83 |
+
### Input: {input}
|
84 |
|
85 |
+
## Response: {response}
|
86 |
+
```
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Inference With Unsloth
|
89 |
|
90 |
+
```python3
|
91 |
+
from unsloth import FastLanguageModel
|
92 |
+
import torch
|
93 |
+
max_seq_length = 2048
|
94 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
95 |
+
load_in_4bit = False
|
96 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
97 |
+
model_name = "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0",
|
98 |
+
max_seq_length = max_seq_length,
|
99 |
+
dtype = dtype,
|
100 |
+
load_in_4bit = load_in_4bit,
|
101 |
+
device_map="auto"
|
102 |
+
)
|
103 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
104 |
|
105 |
+
input_prompt = """
|
106 |
+
### Instruction:
|
107 |
+
{}
|
108 |
|
109 |
+
### Input:
|
110 |
+
{}
|
111 |
|
112 |
+
### Response:
|
113 |
+
{}"""
|
114 |
|
115 |
+
input_text = input_prompt.format(
|
116 |
+
"Tranlsate following sentence to Hindi.", # instruction
|
117 |
+
"India is a great country.", # input
|
118 |
+
"", # output - leave this blank for generation!
|
119 |
+
)
|
120 |
|
121 |
+
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
|
122 |
|
123 |
+
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
|
124 |
+
response = tokenizer.batch_decode(outputs)
|
125 |
+
```
|
126 |
|
127 |
+
# Inference with HuggingFace
|
128 |
|
129 |
+
```python3
|
130 |
+
from peft import AutoModelForCausalLM
|
131 |
+
from transformers import AutoTokenizer
|
132 |
+
import torch
|
133 |
|
134 |
+
model = AutoModelForCausalLM.from_pretrained(
|
135 |
+
"Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0",
|
136 |
+
load_in_4bit = False,
|
137 |
+
token = hf_token
|
138 |
+
)
|
139 |
+
model.to("cuda")
|
140 |
|
141 |
+
tokenizer = AutoTokenizer.from_pretrained("Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0")
|
142 |
|
143 |
+
input_prompt = """
|
144 |
+
### Instruction:
|
145 |
+
{}
|
146 |
|
147 |
+
### Input:
|
148 |
+
{}
|
149 |
|
150 |
+
### Response:
|
151 |
+
{}"""
|
152 |
|
153 |
+
input_text = input_prompt.format(
|
154 |
+
"Tranlsate following sentence to Hindi.", # instruction
|
155 |
+
"India is a great country.", # input
|
156 |
+
"", # output - leave this blank for generation!
|
157 |
+
)
|
158 |
|
159 |
+
inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
|
160 |
|
161 |
+
outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
|
162 |
+
response = tokenizer.batch_decode(outputs)[0]
|
163 |
+
```
|
164 |
|
165 |
+
Refer to the [blog post](https://ravidesetty.medium.com/introducing-indic-gemma-7b-2b-instruction-tuned-model-on-9-indian-languages-navarasa-86bc81b4a282) for sample examples.
|
166 |
|
167 |
+
Please check our [Code Repository](https://github.com/TeluguLLMLabs/Indic-gemma-7b-Navarasa) for training and inference scripts.
|
168 |
|
|
|
169 |
|
170 |
+
# Developers:
|
171 |
|
172 |
+
The model is a collaborative effort by [Ravi Theja](https://twitter.com/ravithejads) and [Ramsri Goutham](https://twitter.com/ramsri_goutham). Feel free to DM either of us if you have any questions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|