Telugu-LLM-Labs commited on
Commit
e13a5d7
·
verified ·
1 Parent(s): 1fcd4d4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -165
README.md CHANGED
@@ -1,200 +1,172 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags:
4
- - unsloth
5
  ---
6
 
7
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
10
 
 
11
 
 
 
 
 
 
12
 
13
- ## Model Details
 
14
 
15
- ### Model Description
16
 
17
- <!-- Provide a longer summary of what this model is. -->
 
18
 
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
 
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
 
29
- ### Model Sources [optional]
30
 
31
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
 
37
- ## Uses
 
38
 
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
40
 
41
- ### Direct Use
 
 
 
 
42
 
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
 
45
- [More Information Needed]
 
 
46
 
47
- ### Downstream Use [optional]
48
 
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
50
 
51
- [More Information Needed]
 
 
 
 
 
52
 
53
- ### Out-of-Scope Use
54
 
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
56
 
57
- [More Information Needed]
 
58
 
59
- ## Bias, Risks, and Limitations
 
60
 
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
62
 
63
- [More Information Needed]
64
 
65
- ### Recommendations
 
 
66
 
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
 
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
 
71
- ## How to Get Started with the Model
72
 
73
- Use the code below to get started with the model.
74
 
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ license_name: gemma-terms-of-use
4
+ license_link: https://ai.google.dev/gemma/terms
5
+ base_model: google/gemma-2b
6
+ datasets:
7
+ - ravithejads/samvaad-hi-filtered
8
+ - Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized
9
+ - Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized
10
+ - Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered
11
+ - Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered
12
+ - Telugu-LLM-Labs/marathi_alpaca_yahma_cleaned_filtered
13
+ - Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered
14
+ - Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered
15
+ - Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered
16
+ - abhinand/tamil-alpaca
17
+ - Tensoic/airoboros-3.2_kn
18
+ - Tensoic/gpt-teacher_kn
19
+ - VishnuPJ/Alpaca_Instruct_Malayalam
20
+ - Tensoic/Alpaca-Gujarati
21
+ - HydraIndicLM/punjabi_alpaca_52K
22
+ - HydraIndicLM/bengali_alpaca_dolly_67k
23
+ - OdiaGenAI/Odia_Alpaca_instructions_52k
24
+ - yahma/alpaca-cleaned
25
+ language:
26
+ - te
27
+ - en
28
+ - ta
29
+ - ml
30
+ - mr
31
+ - hi
32
+ - kn
33
+ - sd
34
+ - ne
35
+ - ur
36
+ - as
37
+ - gu
38
+ - bn
39
+ - pa
40
  library_name: transformers
41
+ pipeline_tag: text-generation
 
42
  ---
43
 
44
+ # Indic-gemma-2b-finetuned-sft-Navarasa-2.0
45
+
46
+ This model is based on [google/gemma-2b](https://huggingface.co/google/gemma-2b) and hase been LoRA finetuned on 15 Indian languages and English language instruction datasets:
47
+
48
+ 1. #### Hindi - [ravithejads/samvaad-hi-filtered](https://huggingface.co/datasets/ravithejads/samvaad-hi-filtered), [HydraIndicLM/hindi_alpaca_dolly_67k](https://huggingface.co/datasets/HydraIndicLM/hindi_alpaca_dolly_67k)(sampled)
49
+ 2. #### Telugu - [Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized), [Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized)
50
+ 3. #### Marathi - [Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered)
51
+ 4. #### Urdu - [Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered)
52
+ 5. #### Assamese - [Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered)
53
+ 6. #### Konkani - [Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered)
54
+ 7. #### Nepali - [Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered)
55
+ 8. #### Sindhi - [Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered](https://huggingface.co/datasets/Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered)
56
+ 9. #### Tamil - [abhinand/tamil-alpaca](https://huggingface.co/datasets/abhinand/tamil-alpaca)
57
+ 10. #### Kannada - [Tensoic/airoboros-3.2_kn](https://huggingface.co/datasets/Tensoic/airoboros-3.2_kn), [Tensoic/gpt-teacher_kn](https://huggingface.co/datasets/Tensoic/gpt-teacher_kn)
58
+ 11. #### Malayalam - [VishnuPJ/Alpaca_Instruct_Malayalam](https://huggingface.co/datasets/VishnuPJ/Alpaca_Instruct_Malayalam)
59
+ 12. #### Gujarati - [Tensoic/Alpaca-Gujarati](https://huggingface.co/datasets/Tensoic/Alpaca-Gujarati)
60
+ 13. #### Punjabi - [HydraIndicLM/punjabi_alpaca_52K](https://huggingface.co/datasets/HydraIndicLM/punjabi_alpaca_52K)
61
+ 14. #### Bengali - [HydraIndicLM/bengali_alpaca_dolly_67k](https://huggingface.co/datasets/HydraIndicLM/bengali_alpaca_dolly_67k)(alpaca filtered)
62
+ 15. #### Odia - [OdiaGenAI/Odia_Alpaca_instructions_52k](https://huggingface.co/datasets/OdiaGenAI/Odia_Alpaca_instructions_52k), [OdiaGenAI/gpt-teacher-roleplay-odia-3k](https://huggingface.co/datasets/OdiaGenAI/gpt-teacher-roleplay-odia-3k)
63
+ 16. #### English - [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned)
64
 
65
+ The model is finetuned using [unsloth](https://github.com/unslothai/unsloth) library and we provide inference code using the same for faster inference. Alternatively you can use HuggingFace Library for inference.
66
 
67
+ # Training Details:
68
 
69
+ The model is trained on approx 650K instruction samples.
70
+ 1. GPU: 1 A100, 80GB
71
+ 2. Time: 45 Hours
72
+ 3. Platform: [E2E Networks](https://www.e2enetworks.com/)
73
+ # Installation
74
 
75
+ `!pip install -U xformers --index-url https://download.pytorch.org/whl/cu121`
76
+ `!pip install "unsloth[kaggle-new] @git+https://github.com/unslothai/unsloth.git@nightly"`
77
 
78
+ # Input Text Format
79
 
80
+ ```
81
+ ### Instruction: {instruction}
82
 
83
+ ### Input: {input}
84
 
85
+ ## Response: {response}
86
+ ```
 
 
 
 
 
87
 
88
+ # Inference With Unsloth
89
 
90
+ ```python3
91
+ from unsloth import FastLanguageModel
92
+ import torch
93
+ max_seq_length = 2048
94
+ dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
95
+ load_in_4bit = False
96
+ model, tokenizer = FastLanguageModel.from_pretrained(
97
+ model_name = "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0",
98
+ max_seq_length = max_seq_length,
99
+ dtype = dtype,
100
+ load_in_4bit = load_in_4bit,
101
+ device_map="auto"
102
+ )
103
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
104
 
105
+ input_prompt = """
106
+ ### Instruction:
107
+ {}
108
 
109
+ ### Input:
110
+ {}
111
 
112
+ ### Response:
113
+ {}"""
114
 
115
+ input_text = input_prompt.format(
116
+ "Tranlsate following sentence to Hindi.", # instruction
117
+ "India is a great country.", # input
118
+ "", # output - leave this blank for generation!
119
+ )
120
 
121
+ inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
122
 
123
+ outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
124
+ response = tokenizer.batch_decode(outputs)
125
+ ```
126
 
127
+ # Inference with HuggingFace
128
 
129
+ ```python3
130
+ from peft import AutoModelForCausalLM
131
+ from transformers import AutoTokenizer
132
+ import torch
133
 
134
+ model = AutoModelForCausalLM.from_pretrained(
135
+ "Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0",
136
+ load_in_4bit = False,
137
+ token = hf_token
138
+ )
139
+ model.to("cuda")
140
 
141
+ tokenizer = AutoTokenizer.from_pretrained("Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0")
142
 
143
+ input_prompt = """
144
+ ### Instruction:
145
+ {}
146
 
147
+ ### Input:
148
+ {}
149
 
150
+ ### Response:
151
+ {}"""
152
 
153
+ input_text = input_prompt.format(
154
+ "Tranlsate following sentence to Hindi.", # instruction
155
+ "India is a great country.", # input
156
+ "", # output - leave this blank for generation!
157
+ )
158
 
159
+ inputs = tokenizer([input_text], return_tensors = "pt").to("cuda")
160
 
161
+ outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)
162
+ response = tokenizer.batch_decode(outputs)[0]
163
+ ```
164
 
165
+ Refer to the [blog post](https://ravidesetty.medium.com/introducing-indic-gemma-7b-2b-instruction-tuned-model-on-9-indian-languages-navarasa-86bc81b4a282) for sample examples.
166
 
167
+ Please check our [Code Repository](https://github.com/TeluguLLMLabs/Indic-gemma-7b-Navarasa) for training and inference scripts.
168
 
 
169
 
170
+ # Developers:
171
 
172
+ The model is a collaborative effort by [Ravi Theja](https://twitter.com/ravithejads) and [Ramsri Goutham](https://twitter.com/ramsri_goutham). Feel free to DM either of us if you have any questions.