File size: 5,502 Bytes
2093040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---

license: cc-by-nc-4.0
base_model: facebook/timesformer-base-finetuned-k400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tsf-gs-rot-flip-wtoken-DRPT-r128-f150-8.8-h768-i3072-p32-b8-e60
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tsf-gs-rot-flip-wtoken-DRPT-r128-f150-8.8-h768-i3072-p32-b8-e60

This model is a fine-tuned version of [facebook/timesformer-base-finetuned-k400](https://huggingface.co/facebook/timesformer-base-finetuned-k400) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7740
- Accuracy: 0.8610

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- training_steps: 6480

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch   | Step | Validation Loss | Accuracy |

|:-------------:|:-------:|:----:|:---------------:|:--------:|

| 1.1114        | 0.0168  | 109  | 1.0984          | 0.3797   |

| 1.1049        | 1.0168  | 218  | 1.1141          | 0.3262   |

| 1.1056        | 2.0168  | 327  | 1.1710          | 0.3262   |

| 1.1154        | 3.0168  | 436  | 1.1256          | 0.3369   |

| 1.1056        | 4.0168  | 545  | 1.0962          | 0.3529   |

| 1.1569        | 5.0168  | 654  | 1.1136          | 0.3262   |

| 1.036         | 6.0168  | 763  | 1.0213          | 0.4652   |

| 1.0506        | 7.0168  | 872  | 1.0488          | 0.4278   |

| 1.042         | 8.0168  | 981  | 0.9366          | 0.5561   |

| 0.8999        | 9.0168  | 1090 | 0.8098          | 0.6310   |

| 0.9432        | 10.0168 | 1199 | 0.9513          | 0.5936   |

| 0.7898        | 11.0168 | 1308 | 0.5836          | 0.8021   |

| 0.7952        | 12.0168 | 1417 | 0.5680          | 0.7647   |

| 0.6641        | 13.0168 | 1526 | 0.6147          | 0.7861   |

| 0.6901        | 14.0168 | 1635 | 0.5688          | 0.7754   |

| 0.4637        | 15.0168 | 1744 | 0.5834          | 0.7914   |

| 0.5898        | 16.0168 | 1853 | 0.6636          | 0.7326   |

| 0.7036        | 17.0168 | 1962 | 0.7142          | 0.7433   |

| 0.3946        | 18.0168 | 2071 | 0.4866          | 0.8342   |

| 0.5379        | 19.0168 | 2180 | 0.6641          | 0.7701   |

| 0.5869        | 20.0168 | 2289 | 0.4817          | 0.8289   |

| 0.4564        | 21.0168 | 2398 | 0.4909          | 0.8396   |

| 0.419         | 22.0168 | 2507 | 0.5006          | 0.8235   |

| 0.4989        | 23.0168 | 2616 | 0.5648          | 0.8182   |

| 0.2701        | 24.0168 | 2725 | 0.5963          | 0.8342   |

| 0.5191        | 25.0168 | 2834 | 0.5766          | 0.7914   |

| 0.5088        | 26.0168 | 2943 | 0.4679          | 0.8610   |

| 0.3828        | 27.0168 | 3052 | 0.5231          | 0.8503   |

| 0.4228        | 28.0168 | 3161 | 0.6142          | 0.8235   |

| 0.5544        | 29.0168 | 3270 | 0.6508          | 0.8289   |

| 0.3595        | 30.0168 | 3379 | 0.6572          | 0.7914   |

| 0.3117        | 31.0168 | 3488 | 0.5587          | 0.8342   |

| 0.3324        | 32.0168 | 3597 | 0.5021          | 0.8610   |

| 0.3282        | 33.0168 | 3706 | 0.7642          | 0.8235   |

| 0.427         | 34.0168 | 3815 | 0.5739          | 0.8663   |

| 0.152         | 35.0168 | 3924 | 0.6957          | 0.8610   |

| 0.426         | 36.0168 | 4033 | 0.6705          | 0.8342   |

| 0.2803        | 37.0168 | 4142 | 0.5854          | 0.8449   |

| 0.3198        | 38.0168 | 4251 | 0.5280          | 0.8449   |

| 0.4348        | 39.0168 | 4360 | 0.7755          | 0.8128   |

| 0.1915        | 40.0168 | 4469 | 0.6813          | 0.8503   |

| 0.0793        | 41.0168 | 4578 | 0.7260          | 0.8503   |

| 0.3902        | 42.0168 | 4687 | 0.6581          | 0.8663   |

| 0.3552        | 43.0168 | 4796 | 0.5732          | 0.8610   |

| 0.3091        | 44.0168 | 4905 | 0.7510          | 0.8396   |

| 0.1103        | 45.0168 | 5014 | 0.7604          | 0.8503   |

| 0.3362        | 46.0168 | 5123 | 0.7156          | 0.8556   |

| 0.1935        | 47.0168 | 5232 | 0.6882          | 0.8503   |

| 0.0889        | 48.0168 | 5341 | 0.7639          | 0.8663   |

| 0.2156        | 49.0168 | 5450 | 0.8250          | 0.8610   |

| 0.0949        | 50.0168 | 5559 | 0.8256          | 0.8556   |

| 0.1735        | 51.0168 | 5668 | 0.6839          | 0.8770   |

| 0.1612        | 52.0168 | 5777 | 0.9082          | 0.8663   |

| 0.0556        | 53.0168 | 5886 | 0.7659          | 0.8770   |

| 0.0997        | 54.0168 | 5995 | 0.8025          | 0.8824   |

| 0.1648        | 55.0168 | 6104 | 0.8449          | 0.8770   |

| 0.1443        | 56.0168 | 6213 | 0.7801          | 0.8770   |

| 0.0405        | 57.0168 | 6322 | 0.8647          | 0.8663   |

| 0.3323        | 58.0168 | 6431 | 0.8411          | 0.8503   |

| 0.1137        | 59.0076 | 6480 | 0.7740          | 0.8610   |





### Framework versions



- Transformers 4.41.2

- Pytorch 1.13.0+cu117

- Datasets 2.20.0

- Tokenizers 0.19.1