|
import math |
|
import os.path as osp |
|
import torch |
|
from collections import OrderedDict |
|
from torch.nn import functional as F |
|
from torchvision.ops import roi_align |
|
from tqdm import tqdm |
|
|
|
from basicsr.archs import build_network |
|
from basicsr.losses import build_loss |
|
from basicsr.losses.losses import r1_penalty |
|
from basicsr.metrics import calculate_metric |
|
from basicsr.models.base_model import BaseModel |
|
from basicsr.utils import get_root_logger, imwrite, tensor2img |
|
from basicsr.utils.registry import MODEL_REGISTRY |
|
|
|
|
|
@MODEL_REGISTRY.register() |
|
class GFPGANModel(BaseModel): |
|
"""GFPGAN model for <Towards real-world blind face restoratin with generative facial prior>""" |
|
|
|
def __init__(self, opt): |
|
super(GFPGANModel, self).__init__(opt) |
|
self.idx = 0 |
|
|
|
|
|
self.net_g = build_network(opt['network_g']) |
|
self.net_g = self.model_to_device(self.net_g) |
|
self.print_network(self.net_g) |
|
|
|
|
|
load_path = self.opt['path'].get('pretrain_network_g', None) |
|
if load_path is not None: |
|
param_key = self.opt['path'].get('param_key_g', 'params') |
|
self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key) |
|
|
|
self.log_size = int(math.log(self.opt['network_g']['out_size'], 2)) |
|
|
|
if self.is_train: |
|
self.init_training_settings() |
|
|
|
def init_training_settings(self): |
|
train_opt = self.opt['train'] |
|
|
|
|
|
self.net_d = build_network(self.opt['network_d']) |
|
self.net_d = self.model_to_device(self.net_d) |
|
self.print_network(self.net_d) |
|
|
|
load_path = self.opt['path'].get('pretrain_network_d', None) |
|
if load_path is not None: |
|
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True)) |
|
|
|
|
|
|
|
|
|
self.net_g_ema = build_network(self.opt['network_g']).to(self.device) |
|
|
|
load_path = self.opt['path'].get('pretrain_network_g', None) |
|
if load_path is not None: |
|
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema') |
|
else: |
|
self.model_ema(0) |
|
|
|
self.net_g.train() |
|
self.net_d.train() |
|
self.net_g_ema.eval() |
|
|
|
|
|
if ('network_d_left_eye' in self.opt and 'network_d_right_eye' in self.opt and 'network_d_mouth' in self.opt): |
|
self.use_facial_disc = True |
|
else: |
|
self.use_facial_disc = False |
|
|
|
if self.use_facial_disc: |
|
|
|
self.net_d_left_eye = build_network(self.opt['network_d_left_eye']) |
|
self.net_d_left_eye = self.model_to_device(self.net_d_left_eye) |
|
self.print_network(self.net_d_left_eye) |
|
load_path = self.opt['path'].get('pretrain_network_d_left_eye') |
|
if load_path is not None: |
|
self.load_network(self.net_d_left_eye, load_path, True, 'params') |
|
|
|
self.net_d_right_eye = build_network(self.opt['network_d_right_eye']) |
|
self.net_d_right_eye = self.model_to_device(self.net_d_right_eye) |
|
self.print_network(self.net_d_right_eye) |
|
load_path = self.opt['path'].get('pretrain_network_d_right_eye') |
|
if load_path is not None: |
|
self.load_network(self.net_d_right_eye, load_path, True, 'params') |
|
|
|
self.net_d_mouth = build_network(self.opt['network_d_mouth']) |
|
self.net_d_mouth = self.model_to_device(self.net_d_mouth) |
|
self.print_network(self.net_d_mouth) |
|
load_path = self.opt['path'].get('pretrain_network_d_mouth') |
|
if load_path is not None: |
|
self.load_network(self.net_d_mouth, load_path, True, 'params') |
|
|
|
self.net_d_left_eye.train() |
|
self.net_d_right_eye.train() |
|
self.net_d_mouth.train() |
|
|
|
|
|
self.cri_component = build_loss(train_opt['gan_component_opt']).to(self.device) |
|
|
|
|
|
if train_opt.get('pixel_opt'): |
|
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device) |
|
else: |
|
self.cri_pix = None |
|
|
|
if train_opt.get('perceptual_opt'): |
|
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device) |
|
else: |
|
self.cri_perceptual = None |
|
|
|
|
|
self.cri_l1 = build_loss(train_opt['L1_opt']).to(self.device) |
|
|
|
|
|
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device) |
|
|
|
|
|
if 'network_identity' in self.opt: |
|
self.use_identity = True |
|
else: |
|
self.use_identity = False |
|
|
|
if self.use_identity: |
|
|
|
self.network_identity = build_network(self.opt['network_identity']) |
|
self.network_identity = self.model_to_device(self.network_identity) |
|
self.print_network(self.network_identity) |
|
load_path = self.opt['path'].get('pretrain_network_identity') |
|
if load_path is not None: |
|
self.load_network(self.network_identity, load_path, True, None) |
|
self.network_identity.eval() |
|
for param in self.network_identity.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
self.r1_reg_weight = train_opt['r1_reg_weight'] |
|
self.net_d_iters = train_opt.get('net_d_iters', 1) |
|
self.net_d_init_iters = train_opt.get('net_d_init_iters', 0) |
|
self.net_d_reg_every = train_opt['net_d_reg_every'] |
|
|
|
|
|
self.setup_optimizers() |
|
self.setup_schedulers() |
|
|
|
def setup_optimizers(self): |
|
train_opt = self.opt['train'] |
|
|
|
|
|
net_g_reg_ratio = 1 |
|
normal_params = [] |
|
for _, param in self.net_g.named_parameters(): |
|
normal_params.append(param) |
|
optim_params_g = [{ |
|
'params': normal_params, |
|
'lr': train_opt['optim_g']['lr'] |
|
}] |
|
optim_type = train_opt['optim_g'].pop('type') |
|
lr = train_opt['optim_g']['lr'] * net_g_reg_ratio |
|
betas = (0**net_g_reg_ratio, 0.99**net_g_reg_ratio) |
|
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, lr, betas=betas) |
|
self.optimizers.append(self.optimizer_g) |
|
|
|
|
|
net_d_reg_ratio = self.net_d_reg_every / (self.net_d_reg_every + 1) |
|
normal_params = [] |
|
for _, param in self.net_d.named_parameters(): |
|
normal_params.append(param) |
|
optim_params_d = [{ |
|
'params': normal_params, |
|
'lr': train_opt['optim_d']['lr'] |
|
}] |
|
optim_type = train_opt['optim_d'].pop('type') |
|
lr = train_opt['optim_d']['lr'] * net_d_reg_ratio |
|
betas = (0**net_d_reg_ratio, 0.99**net_d_reg_ratio) |
|
self.optimizer_d = self.get_optimizer(optim_type, optim_params_d, lr, betas=betas) |
|
self.optimizers.append(self.optimizer_d) |
|
|
|
if self.use_facial_disc: |
|
|
|
optim_type = train_opt['optim_component'].pop('type') |
|
lr = train_opt['optim_component']['lr'] |
|
|
|
self.optimizer_d_left_eye = self.get_optimizer( |
|
optim_type, self.net_d_left_eye.parameters(), lr, betas=(0.9, 0.99)) |
|
self.optimizers.append(self.optimizer_d_left_eye) |
|
|
|
self.optimizer_d_right_eye = self.get_optimizer( |
|
optim_type, self.net_d_right_eye.parameters(), lr, betas=(0.9, 0.99)) |
|
self.optimizers.append(self.optimizer_d_right_eye) |
|
|
|
self.optimizer_d_mouth = self.get_optimizer( |
|
optim_type, self.net_d_mouth.parameters(), lr, betas=(0.9, 0.99)) |
|
self.optimizers.append(self.optimizer_d_mouth) |
|
|
|
def feed_data(self, data): |
|
self.lq = data['lq'].to(self.device) |
|
if 'gt' in data: |
|
self.gt = data['gt'].to(self.device) |
|
|
|
if 'loc_left_eye' in data: |
|
|
|
self.loc_left_eyes = data['loc_left_eye'] |
|
self.loc_right_eyes = data['loc_right_eye'] |
|
self.loc_mouths = data['loc_mouth'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def construct_img_pyramid(self): |
|
pyramid_gt = [self.gt] |
|
down_img = self.gt |
|
for _ in range(0, self.log_size - 3): |
|
down_img = F.interpolate(down_img, scale_factor=0.5, mode='bilinear', align_corners=False) |
|
pyramid_gt.insert(0, down_img) |
|
return pyramid_gt |
|
|
|
def get_roi_regions(self, eye_out_size=80, mouth_out_size=120): |
|
|
|
face_ratio = int(self.opt['network_g']['out_size'] / 512) |
|
eye_out_size *= face_ratio |
|
mouth_out_size *= face_ratio |
|
|
|
rois_eyes = [] |
|
rois_mouths = [] |
|
for b in range(self.loc_left_eyes.size(0)): |
|
|
|
img_inds = self.loc_left_eyes.new_full((2, 1), b) |
|
bbox = torch.stack([self.loc_left_eyes[b, :], self.loc_right_eyes[b, :]], dim=0) |
|
rois = torch.cat([img_inds, bbox], dim=-1) |
|
rois_eyes.append(rois) |
|
|
|
img_inds = self.loc_left_eyes.new_full((1, 1), b) |
|
rois = torch.cat([img_inds, self.loc_mouths[b:b + 1, :]], dim=-1) |
|
rois_mouths.append(rois) |
|
|
|
rois_eyes = torch.cat(rois_eyes, 0).to(self.device) |
|
rois_mouths = torch.cat(rois_mouths, 0).to(self.device) |
|
|
|
|
|
all_eyes = roi_align(self.gt, boxes=rois_eyes, output_size=eye_out_size) * face_ratio |
|
self.left_eyes_gt = all_eyes[0::2, :, :, :] |
|
self.right_eyes_gt = all_eyes[1::2, :, :, :] |
|
self.mouths_gt = roi_align(self.gt, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio |
|
|
|
all_eyes = roi_align(self.output, boxes=rois_eyes, output_size=eye_out_size) * face_ratio |
|
self.left_eyes = all_eyes[0::2, :, :, :] |
|
self.right_eyes = all_eyes[1::2, :, :, :] |
|
self.mouths = roi_align(self.output, boxes=rois_mouths, output_size=mouth_out_size) * face_ratio |
|
|
|
def _gram_mat(self, x): |
|
"""Calculate Gram matrix. |
|
|
|
Args: |
|
x (torch.Tensor): Tensor with shape of (n, c, h, w). |
|
|
|
Returns: |
|
torch.Tensor: Gram matrix. |
|
""" |
|
n, c, h, w = x.size() |
|
features = x.view(n, c, w * h) |
|
features_t = features.transpose(1, 2) |
|
gram = features.bmm(features_t) / (c * h * w) |
|
return gram |
|
|
|
def gray_resize_for_identity(self, out, size=128): |
|
out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :]) |
|
out_gray = out_gray.unsqueeze(1) |
|
out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False) |
|
return out_gray |
|
|
|
def optimize_parameters(self, current_iter): |
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = False |
|
self.optimizer_g.zero_grad() |
|
|
|
if self.use_facial_disc: |
|
for p in self.net_d_left_eye.parameters(): |
|
p.requires_grad = False |
|
for p in self.net_d_right_eye.parameters(): |
|
p.requires_grad = False |
|
for p in self.net_d_mouth.parameters(): |
|
p.requires_grad = False |
|
|
|
|
|
if current_iter < self.opt['train'].get('remove_pyramid_loss', float('inf')): |
|
pyramid_loss_weight = self.opt['train'].get('pyramid_loss_weight', 1) |
|
else: |
|
pyramid_loss_weight = 1e-12 |
|
if pyramid_loss_weight > 0: |
|
self.output, out_rgbs = self.net_g(self.lq, return_rgb=True) |
|
pyramid_gt = self.construct_img_pyramid() |
|
else: |
|
self.output, out_rgbs = self.net_g(self.lq, return_rgb=False) |
|
|
|
|
|
if self.use_facial_disc: |
|
self.get_roi_regions(eye_out_size=80, mouth_out_size=120) |
|
|
|
l_g_total = 0 |
|
loss_dict = OrderedDict() |
|
if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters): |
|
|
|
if self.cri_pix: |
|
l_g_pix = self.cri_pix(self.output, self.gt) |
|
l_g_total += l_g_pix |
|
loss_dict['l_g_pix'] = l_g_pix |
|
|
|
|
|
if pyramid_loss_weight > 0: |
|
for i in range(0, self.log_size - 2): |
|
l_pyramid = self.cri_l1(out_rgbs[i], pyramid_gt[i]) * pyramid_loss_weight |
|
l_g_total += l_pyramid |
|
loss_dict[f'l_p_{2**(i+3)}'] = l_pyramid |
|
|
|
|
|
if self.cri_perceptual: |
|
l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt) |
|
if l_g_percep is not None: |
|
l_g_total += l_g_percep |
|
loss_dict['l_g_percep'] = l_g_percep |
|
if l_g_style is not None: |
|
l_g_total += l_g_style |
|
loss_dict['l_g_style'] = l_g_style |
|
|
|
|
|
fake_g_pred = self.net_d(self.output) |
|
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False) |
|
l_g_total += l_g_gan |
|
loss_dict['l_g_gan'] = l_g_gan |
|
|
|
|
|
if self.use_facial_disc: |
|
|
|
fake_left_eye, fake_left_eye_feats = self.net_d_left_eye(self.left_eyes, return_feats=True) |
|
l_g_gan = self.cri_component(fake_left_eye, True, is_disc=False) |
|
l_g_total += l_g_gan |
|
loss_dict['l_g_gan_left_eye'] = l_g_gan |
|
|
|
fake_right_eye, fake_right_eye_feats = self.net_d_right_eye(self.right_eyes, return_feats=True) |
|
l_g_gan = self.cri_component(fake_right_eye, True, is_disc=False) |
|
l_g_total += l_g_gan |
|
loss_dict['l_g_gan_right_eye'] = l_g_gan |
|
|
|
fake_mouth, fake_mouth_feats = self.net_d_mouth(self.mouths, return_feats=True) |
|
l_g_gan = self.cri_component(fake_mouth, True, is_disc=False) |
|
l_g_total += l_g_gan |
|
loss_dict['l_g_gan_mouth'] = l_g_gan |
|
|
|
if self.opt['train'].get('comp_style_weight', 0) > 0: |
|
|
|
_, real_left_eye_feats = self.net_d_left_eye(self.left_eyes_gt, return_feats=True) |
|
_, real_right_eye_feats = self.net_d_right_eye(self.right_eyes_gt, return_feats=True) |
|
_, real_mouth_feats = self.net_d_mouth(self.mouths_gt, return_feats=True) |
|
|
|
def _comp_style(feat, feat_gt, criterion): |
|
return criterion(self._gram_mat(feat[0]), self._gram_mat( |
|
feat_gt[0].detach())) * 0.5 + criterion( |
|
self._gram_mat(feat[1]), self._gram_mat(feat_gt[1].detach())) |
|
|
|
|
|
comp_style_loss = 0 |
|
comp_style_loss += _comp_style(fake_left_eye_feats, real_left_eye_feats, self.cri_l1) |
|
comp_style_loss += _comp_style(fake_right_eye_feats, real_right_eye_feats, self.cri_l1) |
|
comp_style_loss += _comp_style(fake_mouth_feats, real_mouth_feats, self.cri_l1) |
|
comp_style_loss = comp_style_loss * self.opt['train']['comp_style_weight'] |
|
l_g_total += comp_style_loss |
|
loss_dict['l_g_comp_style_loss'] = comp_style_loss |
|
|
|
|
|
if self.use_identity: |
|
identity_weight = self.opt['train']['identity_weight'] |
|
|
|
out_gray = self.gray_resize_for_identity(self.output) |
|
gt_gray = self.gray_resize_for_identity(self.gt) |
|
|
|
identity_gt = self.network_identity(gt_gray).detach() |
|
identity_out = self.network_identity(out_gray) |
|
l_identity = self.cri_l1(identity_out, identity_gt) * identity_weight |
|
l_g_total += l_identity |
|
loss_dict['l_identity'] = l_identity |
|
|
|
l_g_total.backward() |
|
self.optimizer_g.step() |
|
|
|
|
|
self.model_ema(decay=0.5**(32 / (10 * 1000))) |
|
|
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = True |
|
self.optimizer_d.zero_grad() |
|
if self.use_facial_disc: |
|
for p in self.net_d_left_eye.parameters(): |
|
p.requires_grad = True |
|
for p in self.net_d_right_eye.parameters(): |
|
p.requires_grad = True |
|
for p in self.net_d_mouth.parameters(): |
|
p.requires_grad = True |
|
self.optimizer_d_left_eye.zero_grad() |
|
self.optimizer_d_right_eye.zero_grad() |
|
self.optimizer_d_mouth.zero_grad() |
|
|
|
fake_d_pred = self.net_d(self.output.detach()) |
|
real_d_pred = self.net_d(self.gt) |
|
l_d = self.cri_gan(real_d_pred, True, is_disc=True) + self.cri_gan(fake_d_pred, False, is_disc=True) |
|
loss_dict['l_d'] = l_d |
|
|
|
loss_dict['real_score'] = real_d_pred.detach().mean() |
|
loss_dict['fake_score'] = fake_d_pred.detach().mean() |
|
l_d.backward() |
|
|
|
if current_iter % self.net_d_reg_every == 0: |
|
self.gt.requires_grad = True |
|
real_pred = self.net_d(self.gt) |
|
l_d_r1 = r1_penalty(real_pred, self.gt) |
|
l_d_r1 = (self.r1_reg_weight / 2 * l_d_r1 * self.net_d_reg_every + 0 * real_pred[0]) |
|
loss_dict['l_d_r1'] = l_d_r1.detach().mean() |
|
l_d_r1.backward() |
|
|
|
self.optimizer_d.step() |
|
|
|
if self.use_facial_disc: |
|
|
|
fake_d_pred, _ = self.net_d_left_eye(self.left_eyes.detach()) |
|
real_d_pred, _ = self.net_d_left_eye(self.left_eyes_gt) |
|
l_d_left_eye = self.cri_component( |
|
real_d_pred, True, is_disc=True) + self.cri_gan( |
|
fake_d_pred, False, is_disc=True) |
|
loss_dict['l_d_left_eye'] = l_d_left_eye |
|
l_d_left_eye.backward() |
|
|
|
fake_d_pred, _ = self.net_d_right_eye(self.right_eyes.detach()) |
|
real_d_pred, _ = self.net_d_right_eye(self.right_eyes_gt) |
|
l_d_right_eye = self.cri_component( |
|
real_d_pred, True, is_disc=True) + self.cri_gan( |
|
fake_d_pred, False, is_disc=True) |
|
loss_dict['l_d_right_eye'] = l_d_right_eye |
|
l_d_right_eye.backward() |
|
|
|
fake_d_pred, _ = self.net_d_mouth(self.mouths.detach()) |
|
real_d_pred, _ = self.net_d_mouth(self.mouths_gt) |
|
l_d_mouth = self.cri_component( |
|
real_d_pred, True, is_disc=True) + self.cri_gan( |
|
fake_d_pred, False, is_disc=True) |
|
loss_dict['l_d_mouth'] = l_d_mouth |
|
l_d_mouth.backward() |
|
|
|
self.optimizer_d_left_eye.step() |
|
self.optimizer_d_right_eye.step() |
|
self.optimizer_d_mouth.step() |
|
|
|
self.log_dict = self.reduce_loss_dict(loss_dict) |
|
|
|
def test(self): |
|
with torch.no_grad(): |
|
if hasattr(self, 'net_g_ema'): |
|
self.net_g_ema.eval() |
|
self.output, _ = self.net_g_ema(self.lq) |
|
else: |
|
logger = get_root_logger() |
|
logger.warning('Do not have self.net_g_ema, use self.net_g.') |
|
self.net_g.eval() |
|
self.output, _ = self.net_g(self.lq) |
|
self.net_g.train() |
|
|
|
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): |
|
if self.opt['rank'] == 0: |
|
self.nondist_validation(dataloader, current_iter, tb_logger, save_img) |
|
|
|
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): |
|
dataset_name = dataloader.dataset.opt['name'] |
|
with_metrics = self.opt['val'].get('metrics') is not None |
|
if with_metrics: |
|
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()} |
|
pbar = tqdm(total=len(dataloader), unit='image') |
|
|
|
for idx, val_data in enumerate(dataloader): |
|
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0] |
|
self.feed_data(val_data) |
|
self.test() |
|
|
|
visuals = self.get_current_visuals() |
|
sr_img = tensor2img([visuals['sr']], min_max=(-1, 1)) |
|
gt_img = tensor2img([visuals['gt']], min_max=(-1, 1)) |
|
|
|
if 'gt' in visuals: |
|
gt_img = tensor2img([visuals['gt']], min_max=(-1, 1)) |
|
del self.gt |
|
|
|
del self.lq |
|
del self.output |
|
torch.cuda.empty_cache() |
|
|
|
if save_img: |
|
if self.opt['is_train']: |
|
save_img_path = osp.join(self.opt['path']['visualization'], img_name, |
|
f'{img_name}_{current_iter}.png') |
|
else: |
|
if self.opt['val']['suffix']: |
|
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, |
|
f'{img_name}_{self.opt["val"]["suffix"]}.png') |
|
else: |
|
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, |
|
f'{img_name}_{self.opt["name"]}.png') |
|
imwrite(sr_img, save_img_path) |
|
|
|
if with_metrics: |
|
|
|
for name, opt_ in self.opt['val']['metrics'].items(): |
|
metric_data = dict(img1=sr_img, img2=gt_img) |
|
self.metric_results[name] += calculate_metric(metric_data, opt_) |
|
pbar.update(1) |
|
pbar.set_description(f'Test {img_name}') |
|
pbar.close() |
|
|
|
if with_metrics: |
|
for metric in self.metric_results.keys(): |
|
self.metric_results[metric] /= (idx + 1) |
|
|
|
self._log_validation_metric_values(current_iter, dataset_name, tb_logger) |
|
|
|
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger): |
|
log_str = f'Validation {dataset_name}\n' |
|
for metric, value in self.metric_results.items(): |
|
log_str += f'\t # {metric}: {value:.4f}\n' |
|
logger = get_root_logger() |
|
logger.info(log_str) |
|
if tb_logger: |
|
for metric, value in self.metric_results.items(): |
|
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter) |
|
|
|
def get_current_visuals(self): |
|
out_dict = OrderedDict() |
|
out_dict['gt'] = self.gt.detach().cpu() |
|
out_dict['sr'] = self.output.detach().cpu() |
|
return out_dict |
|
|
|
def save(self, epoch, current_iter): |
|
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema']) |
|
self.save_network(self.net_d, 'net_d', current_iter) |
|
|
|
if self.use_facial_disc: |
|
self.save_network(self.net_d_left_eye, 'net_d_left_eye', current_iter) |
|
self.save_network(self.net_d_right_eye, 'net_d_right_eye', current_iter) |
|
self.save_network(self.net_d_mouth, 'net_d_mouth', current_iter) |
|
self.save_training_state(epoch, current_iter) |
|
|