wbhu-tc commited on
Commit
af15e10
Β·
verified Β·
1 Parent(s): 966e9a5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +126 -1
README.md CHANGED
@@ -11,4 +11,129 @@ tags:
11
  - point-cloud
12
  ---
13
 
14
- GeometryCrafter model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  - point-cloud
12
  ---
13
 
14
+ ## ___***GeometryCrafter: Consistent Geometry Estimation for Open-world Videos with Diffusion Priors***___
15
+ <div align="center">
16
+
17
+ _**[Tian-Xing Xu<sup>1</sup>](https://scholar.google.com/citations?user=zHp0rMIAAAAJ&hl=zh-CN),
18
+ [Xiangjun Gao<sup>3</sup>](https://scholar.google.com/citations?user=qgdesEcAAAAJ&hl=en),
19
+ [Wenbo Hu<sup>2 &dagger;</sup>](https://wbhu.github.io),
20
+ [Xiaoyu Li<sup>2</sup>](https://xiaoyu258.github.io),
21
+ [Song-Hai Zhang<sup>1 &dagger;</sup>](https://scholar.google.com/citations?user=AWtV-EQAAAAJ&hl=en),
22
+ [Ying Shan<sup>2</sup>](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en)**_
23
+ <br>
24
+ <sup>1</sup>Tsinghua University
25
+ <sup>2</sup>ARC Lab, Tencent PCG
26
+ <sup>3</sup>HKUST
27
+
28
+ ![Version](https://img.shields.io/badge/version-1.0.0-blue) &nbsp;
29
+ <a href='https://arxiv.org/abs/2504.01016'><img src='https://img.shields.io/badge/arXiv-2504.01016-b31b1b.svg'></a> &nbsp;
30
+ <a href='https://geometrycrafter.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a> &nbsp;
31
+ <a href='https://huggingface.co/spaces/TencentARC/GeometryCrafter'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a> &nbsp;
32
+
33
+ </div>
34
+
35
+ ## πŸ”† Notice
36
+
37
+ **GeometryCrafter is still under active development!**
38
+
39
+ We recommend that everyone use English to communicate on issues, as this helps developers from around the world discuss, share experiences, and answer questions together. For further implementation details, please contact `[email protected]`. For business licensing and other related inquiries, don't hesitate to contact `[email protected]`.
40
+
41
+ If you find GeometryCrafter useful, **please help ⭐ this repo**, which is important to Open-Source projects. Thanks!
42
+
43
+ ## πŸ“ Introduction
44
+
45
+ We present GeometryCrafter, a novel approach that estimates temporally consistent, high-quality point maps from open-world videos, facilitating downstream applications such as 3D/4D reconstruction and depth-based video editing or generation.
46
+
47
+ Release Notes:
48
+ - `[01/04/2025]` πŸ”₯πŸ”₯πŸ”₯**GeometryCrafter** is released now, have fun!
49
+
50
+ ## πŸš€ Quick Start
51
+
52
+ ### Installation
53
+ 1. Clone this repo:
54
+ ```bash
55
+ git clone --recursive https://github.com/TencentARC/GeometryCrafter
56
+ ```
57
+ 2. Install dependencies (please refer to [requirements.txt](requirements.txt)):
58
+ ```bash
59
+ pip install -r requirements.txt
60
+ ```
61
+
62
+ ### Inference
63
+
64
+ Run inference code on our provided demo videos at 1.27FPS, which requires a GPU with ~40GB memory for 110 frames with 1024x576 resolution:
65
+
66
+ ```bash
67
+ python run.py \
68
+ --video_path examples/video1.mp4 \
69
+ --save_folder workspace/examples_output \
70
+ --height 576 --width 1024
71
+ # resize the input video to the target resolution for processing, which should be divided by 64
72
+ # the output point maps will be restored to the original resolution before saving
73
+ # you can use --downsample_ratio to downsample the input video or reduce --decode_chunk_size to save the memory usage
74
+ ```
75
+
76
+ Run inference code with our deterministic variant at 1.50 FPS
77
+
78
+ ```bash
79
+ python run.py \
80
+ --video_path examples/video1.mp4 \
81
+ --save_folder workspace/examples_output \
82
+ --height 576 --width 1024 \
83
+ --model_type determ
84
+ ```
85
+
86
+ Run low-resolution processing at 2.49 FPS, which requires a GPU with ~22GB memory:
87
+
88
+ ```bash
89
+ python run.py \
90
+ --video_path examples/video1.mp4 \
91
+ --save_folder workspace/examples_output \
92
+ --height 384 --width 640
93
+ ```
94
+
95
+ ### Visualization
96
+
97
+ Visualize the predicted point maps with `Viser`
98
+
99
+ ```bash
100
+ python visualize/vis_point_maps.py \
101
+ --video_path examples/video1.mp4 \
102
+ --data_path workspace/examples_output/video1.npz
103
+ ```
104
+
105
+ ## πŸ€– Gradio Demo
106
+
107
+ - Online demo: [**GeometryCrafter**](https://huggingface.co/spaces/TencentARC/GeometryCrafter)
108
+ - Local demo:
109
+ ```bash
110
+ gradio app.py
111
+ ```
112
+
113
+ ## πŸ“Š Dataset Evaluation
114
+
115
+ Please check the `evaluation` folder.
116
+ - To create the dataset we use in the paper, you need to run `evaluation/preprocess/gen_{dataset_name}.py`.
117
+ - You need to change `DATA_DIR` and `OUTPUT_DIR` first accordint to your working environment.
118
+ - Then you will get the preprocessed datasets containing extracted RGB video and point map npz files. We also provide the catelog of these files.
119
+ - Inference for all datasets scripts:
120
+ ```bash
121
+ bash evaluation/run_batch.sh
122
+ ```
123
+ (Remember to replace the `data_root_dir` and `save_root_dir` with your path.)
124
+ - Evaluation for all datasets scripts (scale-invariant point map estimation):
125
+ ```bash
126
+ bash evaluation/eval.sh
127
+ ```
128
+ (Remember to replace the `pred_data_root_dir` and `gt_data_root_dir` with your path.)
129
+ - Evaluation for all datasets scripts (affine-invariant depth estimation):
130
+ ```bash
131
+ bash evaluation/eval_depth.sh
132
+ ```
133
+ (Remember to replace the `pred_data_root_dir` and `gt_data_root_dir` with your path.)
134
+ - We also provide the comparison results of MoGe and the deterministic variant of our method. You can evaluate these methods under the same protocol by uncomment the corresponding lines in `evaluation/run.sh` `evaluation/eval.sh` `evaluation/run_batch.sh` and `evaluation/eval_depth.sh`.
135
+
136
+ ## 🀝 Contributing
137
+
138
+ - Welcome to open issues and pull requests.
139
+ - Welcome to optimize the inference speed and memory usage, e.g., through model quantization, distillation, or other acceleration techniques.