{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d5db0d96680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4030464, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714670012380771343, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAB3DX749BiY/jwauPpTMAb+150G+2CFSPgAAAAAAAAAAM7XdPOzEzbulJye9UT6xPFpOND1j5JO9AACAPwAAgD9mMNc9CiVmPkvM37305tG+4Z1iPcPN4bwAAAAAAAAAAEqFnj4LJR0/ISaJvs07976g/aQ+jE2HvgAAAAAAAAAAM3NRuntwmbxyAik8QfSDPaKK6b32liw8AACAPwAAgD9jFFi+VVktP9l9ND5kOu++VViHvtuZWz4AAAAAAAAAAM3MizkyU14+nvllPbHbwr5MbEc9lO8ePQAAAAAAAAAAABy4uwTStT+wsRG/qVjZPkuP1TvyAQQ+AAAAAAAAAAAa7gu+tAyFPyvEa756ptq+uw2fvh6wF74AAAAAAAAAAJqCaz0WKaU/ZTzSPmF2Er9D3Is9kCJXPgAAAAAAAAAAADHjvBg8xz36pku8xG+bvgOzlzwQaWg7AAAAAAAAAAAQoWu+S65HPwd4nD1XXea+GYq9vpKwWT4AAAAAAAAAAC3KSD6uy7A+SrQFv2/znr4jFqK9jY2TvgAAAAAAAAAADVPWPY90pj/7GPk+bb7/vkdsLD5iYY8+AAAAAAAAAAAmqza+bUiKPy1Fl74EbcS+s0zEvi6HRr4AAAAAAAAAAI2IFz58No4/y377PntPKL9nv2k+s5uBPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ0GPPszEeMAWyUS+WMAXSUR0Csl40QTVUddX2UKGgGR0Bw2GR5kbxWaAdLx2gIR0CsmCUZm7J5dX2UKGgGR0By/0cYIjW1aAdLyWgIR0CsmEPKMefadX2UKGgGR0BwkH5eqrBCaAdL6WgIR0CsmGHggow3dX2UKGgGR0BxZMSpR4yHaAdL0GgIR0CsmNu/+Kj0dX2UKGgGR0BzpuRvFWGRaAdL3GgIR0CsmPwo9cKPdX2UKGgGR0Bw+iRU3n6maAdL42gIR0CsmSkdV/+bdX2UKGgGR0BzMosVclgMaAdL1mgIR0CsmT3b212JdX2UKGgGR0BwmsIJJGvwaAdL4GgIR0CsmVEORT0hdX2UKGgGR0BxAQvN/vv0aAdLumgIR0CsmWfhl18tdX2UKGgGR0BwME0Ltu1naAdL2GgIR0CsmXzeoDPodX2UKGgGR0ByfnKxLTQWaAdLzGgIR0CsmZbgbZOBdX2UKGgGR0By81vS+g14aAdL2mgIR0Csmfdepn6EdX2UKGgGR0BzCj0xubZwaAdL1mgIR0Csmq5tFa0QdX2UKGgGR0By4PSJCSieaAdL2GgIR0Csmw02UB4mdX2UKGgGR0Bykw/1QIldaAdL6mgIR0Csm2U1IiC8dX2UKGgGR0ByouJdjXnRaAdL2GgIR0Csm7JCrtE5dX2UKGgGR0By7YNNJvpAaAdL12gIR0Csm876xgRcdX2UKGgGR0Bw4KnHeaa1aAdLwmgIR0CsnFg2AG0NdX2UKGgGR0BzTRJz1bqyaAdLuWgIR0CsnJLxZuAJdX2UKGgGR0ByxB0mtyPuaAdL0mgIR0CsnKo24uscdX2UKGgGR0BxVq5iExqPaAdNFQFoCEdArJzTXz19OXV9lChoBkdAdAqJfpljE2gHS/1oCEdArJzji++M63V9lChoBkdAcYFTyrgfl2gHS/JoCEdArJ0rvLHMlnV9lChoBkdAcijl+3H7xmgHS/ZoCEdArJ1Mn7YTTXV9lChoBkdAcyUIikfs/2gHS9xoCEdArJ1qv7m+03V9lChoBkdAZIU/IsAeaWgHTegDaAhHQKydeOo5xR51fZQoaAZHQG/nk0Jng51oB0vGaAhHQKydsRDkU9J1fZQoaAZHQHD91zEJjUdoB0vJaAhHQKyd+/0NBnl1fZQoaAZHQHGlJX2dupFoB0vOaAhHQKyeRgrH2h91fZQoaAZHQHHb1IZqEe1oB0vBaAhHQKyew3VkMCt1fZQoaAZHQHLnpQP7N0NoB0vsaAhHQKye5pW3jMp1fZQoaAZHQHKWTH4oJAtoB0v7aAhHQKyfBU5uIh11fZQoaAZHQHD2H752yLRoB0vJaAhHQKyfGksSTQp1fZQoaAZHQHQfdEgGKQ9oB0vTaAhHQKyfUfVZs9B1fZQoaAZHQHNcW5H3DeloB0vKaAhHQKyfW5qdpZh1fZQoaAZHQHDuduP3i71oB0vSaAhHQKyfgh11W811fZQoaAZHQHIZYvBacI9oB0vPaAhHQKyfwU2UB4l1fZQoaAZHQHLBTqjafz1oB0vJaAhHQKyf6KwY+B91fZQoaAZHQHKZKuSwGGFoB0vEaAhHQKyf5x2B8QZ1fZQoaAZHQHAujLB9Cu5oB0vWaAhHQKyf9YQrc0t1fZQoaAZHQHIteA7PppxoB0vDaAhHQKygZWrfcet1fZQoaAZHQHADM4ku6EtoB0veaAhHQKygam/nGKh1fZQoaAZHQHMEAe3hGYtoB0vnaAhHQKyhHOeJ53V1fZQoaAZHQHHyOsxO+IxoB0vLaAhHQKyhagrYoRZ1fZQoaAZHQHJe5wXIlt1oB0vQaAhHQKyhnLxqfvp1fZQoaAZHQHJkHwLE1l5oB0u/aAhHQKyhskN4JNV1fZQoaAZHQHE898JD3M9oB0vqaAhHQKyhsm3vx6R1fZQoaAZHQHNzyJwbVBloB0vWaAhHQKyhyx7AtWd1fZQoaAZHQHJOJda+vhZoB0u9aAhHQKyh4PYnOSp1fZQoaAZHQHJyyuhbnoxoB0vpaAhHQKyiR9/jKgZ1fZQoaAZHQHI2MZUDMeRoB0vNaAhHQKyiUoQ4CIV1fZQoaAZHQG655a3Zwn9oB0vWaAhHQKyilDziCJ51fZQoaAZHQHCvjwtrbg1oB0veaAhHQKyisAggX/J1fZQoaAZHQHMNv8EV32VoB0vnaAhHQKyjV4EfT1F1fZQoaAZHQHL8brTpgThoB0v0aAhHQKyjiemvW6N1fZQoaAZHQHAGLGBFuvVoB0vDaAhHQKyjrJXhfjV1fZQoaAZHQHK2zCxeLNxoB0vPaAhHQKykJqcmShd1fZQoaAZHQHOjEF0PpY9oB01RAWgIR0CspEhuXNTtdX2UKGgGR0BwcsD1XeWOaAdL0WgIR0CspHP8IiTudX2UKGgGR0ByNLtKIznBaAdL7WgIR0CspNSLQ5WBdX2UKGgGR0B0Bob+98JEaAdL82gIR0CspNRmCiAUdX2UKGgGR0Bw+oyAQQMAaAdLv2gIR0CspNu3MINWdX2UKGgGR0Bx/wYuTRplaAdL8GgIR0CspQmz0HyFdX2UKGgGR0BuulzU7Sy/aAdNfANoCEdArKUhE8aGYnV9lChoBkdAc6HqIacZtWgHTQIBaAhHQKylLEfDDTB1fZQoaAZHQHMcpsfq5b1oB0vQaAhHQKylUb2Dg651fZQoaAZHQHHlhCx/ustoB0vvaAhHQKylZq9oN/h1fZQoaAZHQHM1nqJMxoJoB0vbaAhHQKylihgVoHt1fZQoaAZHQHMCNSAH3URoB0vRaAhHQKyl/3mmtQt1fZQoaAZHQHGQDMvAXVNoB0vAaAhHQKymFGNrCWN1fZQoaAZHQG52KU3XI2hoB0vhaAhHQKymWTrVvuR1fZQoaAZHQDZkY51eSjhoB0uMaAhHQKymfFhoduJ1fZQoaAZHQGM9oC2c8T1oB03oA2gIR0CspoqgIyCWdX2UKGgGR0BxvUvZh8YyaAdLwmgIR0CsppxzaK1pdX2UKGgGR0Bz/QFUyYXwaAdL0WgIR0CspucH4XXRdX2UKGgGR0BxVtkK/mDEaAdL7WgIR0CspvYj8k2QdX2UKGgGR0Bxkhx95QgtaAdLwGgIR0CspwOcUdq+dX2UKGgGR0BvVvZqVQhwaAdLyGgIR0Csp0UEPlMidX2UKGgGR0BwXfd0q6OHaAdLyWgIR0Csp1/ZElVtdX2UKGgGR0BvcuxbB42TaAdLxWgIR0Csp1/tpmEodX2UKGgGR0Bxk6PDHfdiaAdL6GgIR0Csp3StNi6QdX2UKGgGR0BxMCxcE/0NaAdLyWgIR0Csp4w2ETQFdX2UKGgGR0BzAox20Re1aAdLw2gIR0Csp48stkFwdX2UKGgGR0BzUSuTzND/aAdL1mgIR0Csp95nUUfxdX2UKGgGR0Bzs3yRSxZ/aAdLzWgIR0CsqEz7/GVBdX2UKGgGR0BzEh8x9G7SaAdLzGgIR0CsqJAcDKYBdX2UKGgGR0Bwr340uUUxaAdL72gIR0CsqJvmgam5dX2UKGgGR0BwZC0QbuMNaAdLwGgIR0CsqK21c+qzdX2UKGgGR0BwLM+TvAoHaAdL12gIR0CsqMwVKwpwdX2UKGgGR0ByfY8SwnpjaAdL4WgIR0CsqPQb+98JdX2UKGgGR0By1vHBDXvqaAdLxWgIR0CsqQV89fTkdX2UKGgGR0BycWb2Dg62aAdLzWgIR0CsqSb17IDHdX2UKGgGR0BzIIUEgW8AaAdL02gIR0CsqUJ2dNFjdX2UKGgGR0BvB7mbLEDRaAdLzmgIR0CsqYoCEHt4dX2UKGgGR0Bz7hWMju8caAdLx2gIR0CsqYu4wyqNdX2UKGgGR0ByEVOoHcDbaAdLyGgIR0CsqaaBZpztdX2UKGgGR0BxIvYtg8bJaAdLzGgIR0CsqbPMB6rvdX2UKGgGR0BzZcutfXwtaAdL7WgIR0CsqcaPbO/tdX2UKGgGR0BxUAbo8p1BaAdL8WgIR0CsqeVe0G/vdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/TMzMzMzMzhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}