Texttra commited on
Commit
aa7960a
·
verified ·
1 Parent(s): 082e47d

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +16 -5
handler.py CHANGED
@@ -6,26 +6,35 @@ import base64
6
 
7
  class EndpointHandler:
8
  def __init__(self, path: str = ""):
9
- print(f"Initializing SDXL model from: {path}")
10
 
11
- # Load the base SDXL model
12
  self.pipe = StableDiffusionXLPipeline.from_pretrained(
13
- "stabilityai/stable-diffusion-xl-base-1.0",
14
  torch_dtype=torch.float16,
15
  variant="fp16"
16
  )
17
 
18
- print("Loading LoRA weights from: Texttra/Bh0r")
 
 
 
19
  self.pipe.load_lora_weights(
20
  "Texttra/Bh0r",
21
  weight_name="Bh0r-10.safetensors",
22
  adapter_name="bh0r_lora"
23
  )
24
  self.pipe.set_adapters(["bh0r_lora"], adapter_weights=[0.9])
 
 
 
 
25
  self.pipe.fuse_lora()
 
26
 
 
27
  self.pipe.to("cuda" if torch.cuda.is_available() else "cpu")
28
- print("Model ready.")
29
 
30
  def __call__(self, data: Dict) -> Dict:
31
  print("Received data:", data)
@@ -37,6 +46,7 @@ class EndpointHandler:
37
  if not prompt:
38
  return {"error": "No prompt provided."}
39
 
 
40
  image = self.pipe(
41
  prompt,
42
  num_inference_steps=45,
@@ -45,6 +55,7 @@ class EndpointHandler:
45
 
46
  print("Image generated.")
47
 
 
48
  buffer = BytesIO()
49
  image.save(buffer, format="PNG")
50
  base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
 
6
 
7
  class EndpointHandler:
8
  def __init__(self, path: str = ""):
9
+ print(f"🚀 Initializing Bh0r with Juggernaut-XL v9 as base model...")
10
 
11
+ # Load Juggernaut-XL v9 instead of SDXL base
12
  self.pipe = StableDiffusionXLPipeline.from_pretrained(
13
+ "RunDiffusion/Juggernaut-XL-v9",
14
  torch_dtype=torch.float16,
15
  variant="fp16"
16
  )
17
 
18
+ print("✅ Juggernaut-XL v9 base model loaded successfully.")
19
+
20
+ # Load Bh0r LoRA
21
+ print("🧩 Loading Bh0r LoRA weights...")
22
  self.pipe.load_lora_weights(
23
  "Texttra/Bh0r",
24
  weight_name="Bh0r-10.safetensors",
25
  adapter_name="bh0r_lora"
26
  )
27
  self.pipe.set_adapters(["bh0r_lora"], adapter_weights=[0.9])
28
+
29
+ print("✅ Bh0r LoRA loaded with 0.9 weight.")
30
+
31
+ # Fuse LoRA into base model
32
  self.pipe.fuse_lora()
33
+ print("🔗 Fused LoRA into base model.")
34
 
35
+ # Move to GPU if available
36
  self.pipe.to("cuda" if torch.cuda.is_available() else "cpu")
37
+ print("🎯 Model ready on device:", "cuda" if torch.cuda.is_available() else "cpu")
38
 
39
  def __call__(self, data: Dict) -> Dict:
40
  print("Received data:", data)
 
46
  if not prompt:
47
  return {"error": "No prompt provided."}
48
 
49
+ # Generate the image
50
  image = self.pipe(
51
  prompt,
52
  num_inference_steps=45,
 
55
 
56
  print("Image generated.")
57
 
58
+ # Convert to base64
59
  buffer = BytesIO()
60
  image.save(buffer, format="PNG")
61
  base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8")