English
ThatFkrDurk66 commited on
Commit
90ddb86
·
verified ·
1 Parent(s): e1b7536

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ import numpy as np
4
+ import pandas as pd
5
+ from PIL import Image
6
+ import nltk
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer
8
+ import yaml
9
+
10
+ # Download NLTK data
11
+ nltk.download('punkt')
12
+
13
+ # Load YAML configuration
14
+ @st.cache
15
+ def load_yaml(file_path):
16
+ with open(file_path, "r") as file:
17
+ return yaml.safe_load(file)
18
+
19
+ config = load_yaml("self-evolving-agent-prompt-en.yaml.txt")
20
+
21
+ # Load model and tokenizer
22
+ @st.cache(allow_output_mutation=True)
23
+ def load_model_and_tokenizer(model_path):
24
+ tokenizer = AutoTokenizer.from_pretrained("gpt2")
25
+ model = AutoModelForCausalLM.from_pretrained(
26
+ "gpt2",
27
+ state_dict=torch.load(model_path, map_location=torch.device("cpu")),
28
+ )
29
+ return tokenizer, model
30
+
31
+ tokenizer, model = load_model_and_tokenizer("flux_lustly-ai_v1.safetensors")
32
+
33
+ # Streamlit UI setup
34
+ st.set_page_config(page_title="NOVA Assistant", layout="wide")
35
+ st.title("NOVA Assistant")
36
+ st.markdown(config.get("description", "An advanced AI assistant."))
37
+
38
+ # User input
39
+ user_input = st.text_input("Enter your question or prompt:")
40
+
41
+ if user_input:
42
+ with st.spinner("Processing..."):
43
+ # Use NLTK to preprocess the input
44
+ sentences = nltk.sent_tokenize(user_input)
45
+ word_count = sum(len(nltk.word_tokenize(sentence)) for sentence in sentences)
46
+
47
+ # Display preprocessing stats
48
+ st.write(f"Preprocessing stats: {len(sentences)} sentences, {word_count} words")
49
+
50
+ # Generate AI response
51
+ prompt_template = config.get("prompt_template", "{input}")
52
+ prompt = prompt_template.replace("{input}", user_input)
53
+
54
+ inputs = tokenizer(prompt, return_tensors="pt")
55
+ outputs = model.generate(inputs.input_ids, max_length=150, num_return_sequences=1)
56
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
57
+
58
+ # Example: Use numpy for a dummy operation (e.g., scaling output length)
59
+ response_length = len(response.split())
60
+ scaled_length = np.sqrt(response_length) # Example use of numpy
61
+ st.write(f"Response length (scaled): {scaled_length:.2f}")
62
+
63
+ st.subheader("AI Response:")
64
+ st.write(response)
65
+
66
+ # Adding a sample DataFrame with Pandas
67
+ st.sidebar.header("Sample Data")
68
+ data = {
69
+ "Input Length": [5, 10, 20],
70
+ "Response Length": [15, 25, 35],
71
+ "AI Confidence": [0.8, 0.9, 0.95]
72
+ }
73
+ df = pd.DataFrame(data)
74
+ st.sidebar.write("Sample DataFrame:")
75
+ st.sidebar.dataframe(df)
76
+
77
+ # Image processing with Pillow (optional)
78
+ uploaded_file = st.file_uploader("Upload an image (optional):", type=["png", "jpg", "jpeg"])
79
+ if uploaded_file:
80
+ img = Image.open(uploaded_file)
81
+ st.image(img, caption="Uploaded Image", use_column_width=True)
82
+ st.write(f"Image Size: {img.size} (Width x Height)")
83
+