Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
import nltk
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
import yaml
|
9 |
+
|
10 |
+
# Download NLTK data
|
11 |
+
nltk.download('punkt')
|
12 |
+
|
13 |
+
# Load YAML configuration
|
14 |
+
@st.cache
|
15 |
+
def load_yaml(file_path):
|
16 |
+
with open(file_path, "r") as file:
|
17 |
+
return yaml.safe_load(file)
|
18 |
+
|
19 |
+
config = load_yaml("self-evolving-agent-prompt-en.yaml.txt")
|
20 |
+
|
21 |
+
# Load model and tokenizer
|
22 |
+
@st.cache(allow_output_mutation=True)
|
23 |
+
def load_model_and_tokenizer(model_path):
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
"gpt2",
|
27 |
+
state_dict=torch.load(model_path, map_location=torch.device("cpu")),
|
28 |
+
)
|
29 |
+
return tokenizer, model
|
30 |
+
|
31 |
+
tokenizer, model = load_model_and_tokenizer("flux_lustly-ai_v1.safetensors")
|
32 |
+
|
33 |
+
# Streamlit UI setup
|
34 |
+
st.set_page_config(page_title="NOVA Assistant", layout="wide")
|
35 |
+
st.title("NOVA Assistant")
|
36 |
+
st.markdown(config.get("description", "An advanced AI assistant."))
|
37 |
+
|
38 |
+
# User input
|
39 |
+
user_input = st.text_input("Enter your question or prompt:")
|
40 |
+
|
41 |
+
if user_input:
|
42 |
+
with st.spinner("Processing..."):
|
43 |
+
# Use NLTK to preprocess the input
|
44 |
+
sentences = nltk.sent_tokenize(user_input)
|
45 |
+
word_count = sum(len(nltk.word_tokenize(sentence)) for sentence in sentences)
|
46 |
+
|
47 |
+
# Display preprocessing stats
|
48 |
+
st.write(f"Preprocessing stats: {len(sentences)} sentences, {word_count} words")
|
49 |
+
|
50 |
+
# Generate AI response
|
51 |
+
prompt_template = config.get("prompt_template", "{input}")
|
52 |
+
prompt = prompt_template.replace("{input}", user_input)
|
53 |
+
|
54 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
55 |
+
outputs = model.generate(inputs.input_ids, max_length=150, num_return_sequences=1)
|
56 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
57 |
+
|
58 |
+
# Example: Use numpy for a dummy operation (e.g., scaling output length)
|
59 |
+
response_length = len(response.split())
|
60 |
+
scaled_length = np.sqrt(response_length) # Example use of numpy
|
61 |
+
st.write(f"Response length (scaled): {scaled_length:.2f}")
|
62 |
+
|
63 |
+
st.subheader("AI Response:")
|
64 |
+
st.write(response)
|
65 |
+
|
66 |
+
# Adding a sample DataFrame with Pandas
|
67 |
+
st.sidebar.header("Sample Data")
|
68 |
+
data = {
|
69 |
+
"Input Length": [5, 10, 20],
|
70 |
+
"Response Length": [15, 25, 35],
|
71 |
+
"AI Confidence": [0.8, 0.9, 0.95]
|
72 |
+
}
|
73 |
+
df = pd.DataFrame(data)
|
74 |
+
st.sidebar.write("Sample DataFrame:")
|
75 |
+
st.sidebar.dataframe(df)
|
76 |
+
|
77 |
+
# Image processing with Pillow (optional)
|
78 |
+
uploaded_file = st.file_uploader("Upload an image (optional):", type=["png", "jpg", "jpeg"])
|
79 |
+
if uploaded_file:
|
80 |
+
img = Image.open(uploaded_file)
|
81 |
+
st.image(img, caption="Uploaded Image", use_column_width=True)
|
82 |
+
st.write(f"Image Size: {img.size} (Width x Height)")
|
83 |
+
|