Upload 3 files
Browse files- Stress Categorization Using BERT Transformer.ipynb +2164 -0
- config.json +37 -0
- tf_model.h5 +3 -0
Stress Categorization Using BERT Transformer.ipynb
ADDED
@@ -0,0 +1,2164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"id": "TdrNem1HbCQD"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import pandas as pd\n",
|
13 |
+
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
|
14 |
+
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
|
15 |
+
"from tensorflow.keras.models import Sequential\n",
|
16 |
+
"from tensorflow.keras.layers import Embedding, Flatten, Dense, LSTM, Dropout\n",
|
17 |
+
"from tensorflow.keras.utils import to_categorical\n",
|
18 |
+
"from sklearn.model_selection import train_test_split\n",
|
19 |
+
"from sklearn.preprocessing import LabelEncoder"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": null,
|
25 |
+
"metadata": {
|
26 |
+
"colab": {
|
27 |
+
"base_uri": "https://localhost:8080/"
|
28 |
+
},
|
29 |
+
"id": "s64hY6QGbZgP",
|
30 |
+
"outputId": "3407cb60-0fdd-40d5-85cd-ab8cd2cfa4e1"
|
31 |
+
},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"name": "stdout",
|
35 |
+
"output_type": "stream",
|
36 |
+
"text": [
|
37 |
+
"Collecting transformers\n",
|
38 |
+
" Downloading transformers-4.31.0-py3-none-any.whl (7.4 MB)\n",
|
39 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m28.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
40 |
+
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.2)\n",
|
41 |
+
"Collecting huggingface-hub<1.0,>=0.14.1 (from transformers)\n",
|
42 |
+
" Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n",
|
43 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m17.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
44 |
+
"\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.23.5)\n",
|
45 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)\n",
|
46 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
|
47 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.6.3)\n",
|
48 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
|
49 |
+
"Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers)\n",
|
50 |
+
" Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n",
|
51 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m29.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
52 |
+
"\u001b[?25hCollecting safetensors>=0.3.1 (from transformers)\n",
|
53 |
+
" Downloading safetensors-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
|
54 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m51.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
55 |
+
"\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.1)\n",
|
56 |
+
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (2023.6.0)\n",
|
57 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers) (4.7.1)\n",
|
58 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.2.0)\n",
|
59 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n",
|
60 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.4)\n",
|
61 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.7.22)\n",
|
62 |
+
"Installing collected packages: tokenizers, safetensors, huggingface-hub, transformers\n",
|
63 |
+
"Successfully installed huggingface-hub-0.16.4 safetensors-0.3.2 tokenizers-0.13.3 transformers-4.31.0\n"
|
64 |
+
]
|
65 |
+
}
|
66 |
+
],
|
67 |
+
"source": [
|
68 |
+
"!pip install transformers"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"metadata": {
|
75 |
+
"colab": {
|
76 |
+
"base_uri": "https://localhost:8080/",
|
77 |
+
"height": 241,
|
78 |
+
"referenced_widgets": [
|
79 |
+
"32a00fccb8f446359ea356e01b50be59",
|
80 |
+
"db850c05bccd4dc9af135a680bad809e",
|
81 |
+
"99fbbbb3a9dd4bce9f79e0fa3be04e17",
|
82 |
+
"4fab7cf2e4c54d4fbe96b8cefef8bd82",
|
83 |
+
"f0f7ae319b314e309c61a0b007637b01",
|
84 |
+
"a6d0f7a34c5d4d3386ded0334163f67f",
|
85 |
+
"32cb7af7887f4a8584a0069b345f9b72",
|
86 |
+
"3e89a9d94cbd418f810d288add0b86a5",
|
87 |
+
"97919643cb5049d6af4f561d5abefc8a",
|
88 |
+
"f51e8488f2544cb28b80f7bb8203a0f1",
|
89 |
+
"c9e1e3ddf9b44ae4b7ee048aa8640987"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
"id": "q9IQ8LtfbEaY",
|
93 |
+
"outputId": "687198cd-5896-414d-fd5c-6f0b0dbd2a2c"
|
94 |
+
},
|
95 |
+
"outputs": [
|
96 |
+
{
|
97 |
+
"metadata": {
|
98 |
+
"tags": null
|
99 |
+
},
|
100 |
+
"name": "stderr",
|
101 |
+
"output_type": "stream",
|
102 |
+
"text": [
|
103 |
+
"Truncation was not explicitly activated but `max_length` is provided a specific value, please use `truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy more precisely by providing a specific strategy to `truncation`.\n",
|
104 |
+
"/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:2418: FutureWarning: The `pad_to_max_length` argument is deprecated and will be removed in a future version, use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or use `padding='max_length'` to pad to a max length. In this case, you can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the maximal input size of the model (e.g. 512 for Bert).\n",
|
105 |
+
" warnings.warn(\n"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"data": {
|
110 |
+
"application/vnd.jupyter.widget-view+json": {
|
111 |
+
"model_id": "32a00fccb8f446359ea356e01b50be59",
|
112 |
+
"version_major": 2,
|
113 |
+
"version_minor": 0
|
114 |
+
},
|
115 |
+
"text/plain": [
|
116 |
+
"Downloading model.safetensors: 0%| | 0.00/440M [00:00<?, ?B/s]"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
"metadata": {},
|
120 |
+
"output_type": "display_data"
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"metadata": {
|
124 |
+
"tags": null
|
125 |
+
},
|
126 |
+
"name": "stderr",
|
127 |
+
"output_type": "stream",
|
128 |
+
"text": [
|
129 |
+
"All PyTorch model weights were used when initializing TFBertForSequenceClassification.\n",
|
130 |
+
"\n",
|
131 |
+
"Some weights or buffers of the TF 2.0 model TFBertForSequenceClassification were not initialized from the PyTorch model and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
132 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"metadata": {
|
137 |
+
"tags": null
|
138 |
+
},
|
139 |
+
"name": "stdout",
|
140 |
+
"output_type": "stream",
|
141 |
+
"text": [
|
142 |
+
" 48/Unknown - 1493s 30s/step - loss: 1.2474 - accuracy: 0.3886"
|
143 |
+
]
|
144 |
+
}
|
145 |
+
],
|
146 |
+
"source": [
|
147 |
+
"import pandas as pd\n",
|
148 |
+
"import re\n",
|
149 |
+
"from sklearn.model_selection import train_test_split\n",
|
150 |
+
"from transformers import BertTokenizer, TFBertForSequenceClassification\n",
|
151 |
+
"from transformers import InputExample, InputFeatures\n",
|
152 |
+
"import tensorflow as tf\n",
|
153 |
+
"\n",
|
154 |
+
"# 1. Load and inspect the data\n",
|
155 |
+
"data = pd.read_excel('stress_data.xlsx')\n",
|
156 |
+
"\n",
|
157 |
+
"# 2. Clean and preprocess the data\n",
|
158 |
+
"def clean_text(text):\n",
|
159 |
+
" text = text.lower()\n",
|
160 |
+
" text = re.sub(r'http\\S+|www\\S+|https\\S+', '', text, flags=re.MULTILINE)\n",
|
161 |
+
" text = re.sub(r'\\d+|\\W+', ' ', text)\n",
|
162 |
+
" return text\n",
|
163 |
+
"\n",
|
164 |
+
"data['Cleaned_Posts'] = data['Posts'].apply(clean_text)\n",
|
165 |
+
"\n",
|
166 |
+
"# Convert string labels to integer indices\n",
|
167 |
+
"label_encoder = LabelEncoder()\n",
|
168 |
+
"\n",
|
169 |
+
"data['LabelIndices'] = label_encoder.fit_transform(data['Labels'])\n",
|
170 |
+
"\n",
|
171 |
+
"# 3. Tokenize data using BERT's tokenizer\n",
|
172 |
+
"tokenizer = BertTokenizer.from_pretrained(\"bert-base-uncased\", do_lower_case=True)\n",
|
173 |
+
"\n",
|
174 |
+
"# Split the data into train and test\n",
|
175 |
+
"train, test = train_test_split(data, test_size=0.2, random_state=42)\n",
|
176 |
+
"\n",
|
177 |
+
"# Convert data to InputExample format\n",
|
178 |
+
"def convert_data_to_input_example(data):\n",
|
179 |
+
" return data.apply(lambda x: InputExample(guid=None, text_a=x['Cleaned_Posts'], text_b=None, label=x['LabelIndices']), axis=1)\n",
|
180 |
+
"\n",
|
181 |
+
"train_InputExamples = convert_data_to_input_example(train)\n",
|
182 |
+
"test_InputExamples = convert_data_to_input_example(test)\n",
|
183 |
+
"\n",
|
184 |
+
"# Convert to features for BERT input\n",
|
185 |
+
"def convert_input_example_to_feature(example):\n",
|
186 |
+
" return tokenizer.encode_plus(example.text_a, add_special_tokens=True, max_length=128, pad_to_max_length=True, return_attention_mask=True, return_token_type_ids=False)\n",
|
187 |
+
"\n",
|
188 |
+
"train_features = train_InputExamples.apply(convert_input_example_to_feature)\n",
|
189 |
+
"test_features = test_InputExamples.apply(convert_input_example_to_feature)\n",
|
190 |
+
"\n",
|
191 |
+
"# Convert features to tensorflow dataset\n",
|
192 |
+
"def convert_features_to_tf_dataset(features, labels):\n",
|
193 |
+
" def gen():\n",
|
194 |
+
" for f, l in zip(features, labels):\n",
|
195 |
+
" yield ({'input_ids': f['input_ids'], 'attention_mask': f['attention_mask']}, l)\n",
|
196 |
+
" return tf.data.Dataset.from_generator(gen, ({'input_ids': tf.int32, 'attention_mask': tf.int32}, tf.int64), ({'input_ids': tf.TensorShape([None]), 'attention_mask': tf.TensorShape([None])}, tf.TensorShape([])))\n",
|
197 |
+
"\n",
|
198 |
+
"train_dataset = convert_features_to_tf_dataset(train_features, train['LabelIndices']).shuffle(100).batch(32).repeat(2)\n",
|
199 |
+
"test_dataset = convert_features_to_tf_dataset(test_features, test['LabelIndices']).batch(32)\n",
|
200 |
+
"\n",
|
201 |
+
"# 4. Fine-tune BERT on the dataset\n",
|
202 |
+
"model_new = TFBertForSequenceClassification.from_pretrained(\"bert-base-uncased\", num_labels=len(data['Labels'].unique()))\n",
|
203 |
+
"model_new.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[tf.keras.metrics.SparseCategoricalAccuracy('accuracy')])\n",
|
204 |
+
"model_new.fit(train_dataset, epochs=1, validation_data=test_dataset)\n",
|
205 |
+
"\n",
|
206 |
+
"# 5. Evaluate the model\n",
|
207 |
+
"loss, accuracy = model_new.evaluate(test_dataset)\n",
|
208 |
+
"print(f\"Test accuracy: {accuracy}\")"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"source": [
|
214 |
+
"\n",
|
215 |
+
"model_new.save_pretrained(\"./saved_model/\")\n",
|
216 |
+
"\n",
|
217 |
+
"!zip -r saved_model.zip ./saved_model/\n",
|
218 |
+
"\n",
|
219 |
+
"from google.colab import drive\n",
|
220 |
+
"drive.mount('/content/drive')"
|
221 |
+
],
|
222 |
+
"metadata": {
|
223 |
+
"id": "eJ-539Cvm2qr"
|
224 |
+
},
|
225 |
+
"execution_count": null,
|
226 |
+
"outputs": []
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "code",
|
230 |
+
"source": [],
|
231 |
+
"metadata": {
|
232 |
+
"id": "EoY_YzaYmHjC"
|
233 |
+
},
|
234 |
+
"execution_count": null,
|
235 |
+
"outputs": []
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "markdown",
|
239 |
+
"source": [],
|
240 |
+
"metadata": {
|
241 |
+
"id": "nF9CTCGxmH1m"
|
242 |
+
}
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"cell_type": "code",
|
246 |
+
"source": [],
|
247 |
+
"metadata": {
|
248 |
+
"id": "B-JSmVxEmICh"
|
249 |
+
},
|
250 |
+
"execution_count": null,
|
251 |
+
"outputs": []
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "markdown",
|
255 |
+
"source": [
|
256 |
+
"# New Section"
|
257 |
+
],
|
258 |
+
"metadata": {
|
259 |
+
"id": "Cl_clsbfmI2u"
|
260 |
+
}
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"source": [],
|
265 |
+
"metadata": {
|
266 |
+
"id": "nYgWKFBdmEPR"
|
267 |
+
},
|
268 |
+
"execution_count": null,
|
269 |
+
"outputs": []
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"source": [
|
274 |
+
"pip install transformers"
|
275 |
+
],
|
276 |
+
"metadata": {
|
277 |
+
"id": "9khb6mJwmE3F",
|
278 |
+
"colab": {
|
279 |
+
"base_uri": "https://localhost:8080/"
|
280 |
+
},
|
281 |
+
"outputId": "51a737a0-197f-491f-a815-4bc410350376"
|
282 |
+
},
|
283 |
+
"execution_count": 3,
|
284 |
+
"outputs": [
|
285 |
+
{
|
286 |
+
"output_type": "stream",
|
287 |
+
"name": "stdout",
|
288 |
+
"text": [
|
289 |
+
"Collecting transformers\n",
|
290 |
+
" Downloading transformers-4.32.0-py3-none-any.whl (7.5 MB)\n",
|
291 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.5/7.5 MB\u001b[0m \u001b[31m72.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
292 |
+
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.2)\n",
|
293 |
+
"Collecting huggingface-hub<1.0,>=0.15.1 (from transformers)\n",
|
294 |
+
" Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n",
|
295 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m35.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
296 |
+
"\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.23.5)\n",
|
297 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)\n",
|
298 |
+
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0.1)\n",
|
299 |
+
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2023.6.3)\n",
|
300 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.31.0)\n",
|
301 |
+
"Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers)\n",
|
302 |
+
" Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n",
|
303 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m79.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
304 |
+
"\u001b[?25hCollecting safetensors>=0.3.1 (from transformers)\n",
|
305 |
+
" Downloading safetensors-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
|
306 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m86.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
307 |
+
"\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.66.1)\n",
|
308 |
+
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.15.1->transformers) (2023.6.0)\n",
|
309 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.15.1->transformers) (4.7.1)\n",
|
310 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.2.0)\n",
|
311 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n",
|
312 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.4)\n",
|
313 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2023.7.22)\n",
|
314 |
+
"Installing collected packages: tokenizers, safetensors, huggingface-hub, transformers\n",
|
315 |
+
"Successfully installed huggingface-hub-0.16.4 safetensors-0.3.3 tokenizers-0.13.3 transformers-4.32.0\n"
|
316 |
+
]
|
317 |
+
}
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "code",
|
322 |
+
"execution_count": 6,
|
323 |
+
"metadata": {
|
324 |
+
"colab": {
|
325 |
+
"base_uri": "https://localhost:8080/",
|
326 |
+
"height": 197,
|
327 |
+
"referenced_widgets": [
|
328 |
+
"b233a84faeeb4e6db05b54853a712306",
|
329 |
+
"edf4bc0025474420b8b509f50c633dac",
|
330 |
+
"33557d21210142bab4604b1a25d13c1f",
|
331 |
+
"569657898c0a41f6807149b75056fe30",
|
332 |
+
"d756b7b7e64746df8910c893fd669997",
|
333 |
+
"2d8c70e1541c45968aac54e660e42290",
|
334 |
+
"b11378b2e3f94ffc955357df9a1e79a6",
|
335 |
+
"d3cd5ae5c44e4fc291161543e590d5f2",
|
336 |
+
"78d0469b165645388939e9de25a485d1",
|
337 |
+
"505fa60eaf34444fb5bbf15cfb26eea0",
|
338 |
+
"616d49bd01034f3ba3475c3fb5678c8c",
|
339 |
+
"47380f5fb7a84117a5111b793112ccb7",
|
340 |
+
"dac124b1a57547fca17d82f6d0c657a1",
|
341 |
+
"d7dba2f6840f4fcc8f40c19dc00728aa",
|
342 |
+
"911a8f4abac94139bff29856dd388d66",
|
343 |
+
"f5d8a137a5464cc8b65234113ccb3035",
|
344 |
+
"ae330ca3db674b19b221dc6b959a849c",
|
345 |
+
"f119e54274584cce9994da81e3088f31",
|
346 |
+
"162bbf7db0f04757b32f12342ea1b469",
|
347 |
+
"438c3def082e4ee4b22e213a85263e95",
|
348 |
+
"566ff1a7d087482d8dff86e81c408cf8",
|
349 |
+
"7bec7296065e48739e67e498beb93a61",
|
350 |
+
"aea1a283ac1b41e2b62c1f09f6afff45",
|
351 |
+
"b67848e7c426480a82381325e9676fc2",
|
352 |
+
"1d46459ac8a44bc3bde70d24b9d029bf",
|
353 |
+
"ba9b581e9a1d4b10ac37fb82aba866d0",
|
354 |
+
"ee226c57f8e2475ca6810721a522a223",
|
355 |
+
"53496d66f57a4805837340d07216cea4",
|
356 |
+
"5c77f423a23b44ed9c9187a5991ffd45",
|
357 |
+
"e6b65d341d464d00a02ca4f4558f5eca",
|
358 |
+
"dad71950568b48ea86698584d1a3c8aa",
|
359 |
+
"7c7adbd1a76446c0aba2f535e2c1fabd",
|
360 |
+
"69fae47244e542f886a1e487a3126aef"
|
361 |
+
]
|
362 |
+
},
|
363 |
+
"id": "64dIHCvibh3a",
|
364 |
+
"outputId": "28d3915d-306b-4009-825c-9ea66866e6ec"
|
365 |
+
},
|
366 |
+
"outputs": [
|
367 |
+
{
|
368 |
+
"output_type": "display_data",
|
369 |
+
"data": {
|
370 |
+
"text/plain": [
|
371 |
+
"Downloading (…)solve/main/vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
372 |
+
],
|
373 |
+
"application/vnd.jupyter.widget-view+json": {
|
374 |
+
"version_major": 2,
|
375 |
+
"version_minor": 0,
|
376 |
+
"model_id": "b233a84faeeb4e6db05b54853a712306"
|
377 |
+
}
|
378 |
+
},
|
379 |
+
"metadata": {}
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"output_type": "display_data",
|
383 |
+
"data": {
|
384 |
+
"text/plain": [
|
385 |
+
"Downloading (…)okenizer_config.json: 0%| | 0.00/28.0 [00:00<?, ?B/s]"
|
386 |
+
],
|
387 |
+
"application/vnd.jupyter.widget-view+json": {
|
388 |
+
"version_major": 2,
|
389 |
+
"version_minor": 0,
|
390 |
+
"model_id": "47380f5fb7a84117a5111b793112ccb7"
|
391 |
+
}
|
392 |
+
},
|
393 |
+
"metadata": {}
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"output_type": "display_data",
|
397 |
+
"data": {
|
398 |
+
"text/plain": [
|
399 |
+
"Downloading (…)lve/main/config.json: 0%| | 0.00/570 [00:00<?, ?B/s]"
|
400 |
+
],
|
401 |
+
"application/vnd.jupyter.widget-view+json": {
|
402 |
+
"version_major": 2,
|
403 |
+
"version_minor": 0,
|
404 |
+
"model_id": "aea1a283ac1b41e2b62c1f09f6afff45"
|
405 |
+
}
|
406 |
+
},
|
407 |
+
"metadata": {}
|
408 |
+
}
|
409 |
+
],
|
410 |
+
"source": [
|
411 |
+
"import pandas as pd\n",
|
412 |
+
"import re\n",
|
413 |
+
"from sklearn.model_selection import train_test_split\n",
|
414 |
+
"from transformers import BertTokenizer, TFBertForSequenceClassification\n",
|
415 |
+
"from transformers import InputExample, InputFeatures\n",
|
416 |
+
"import tensorflow as tf\n",
|
417 |
+
"\n",
|
418 |
+
"# 1. Load and inspect the data\n",
|
419 |
+
"data = pd.read_excel('stress_data.xlsx')\n",
|
420 |
+
"\n",
|
421 |
+
"# 2. Clean and preprocess the data\n",
|
422 |
+
"def clean_text(text):\n",
|
423 |
+
" text = text.lower()\n",
|
424 |
+
" text = re.sub(r'http\\S+|www\\S+|https\\S+', '', text, flags=re.MULTILINE)\n",
|
425 |
+
" text = re.sub(r'\\d+|\\W+', ' ', text)\n",
|
426 |
+
" return text\n",
|
427 |
+
"\n",
|
428 |
+
"data['Cleaned_Posts'] = data['Posts'].apply(clean_text)\n",
|
429 |
+
"\n",
|
430 |
+
"# Convert string labels to integer indices\n",
|
431 |
+
"label_encoder = LabelEncoder()\n",
|
432 |
+
"\n",
|
433 |
+
"data['LabelIndices'] = label_encoder.fit_transform(data['Labels'])\n",
|
434 |
+
"\n",
|
435 |
+
"# 3. Tokenize data using BERT's tokenizer\n",
|
436 |
+
"tokenizer = BertTokenizer.from_pretrained(\"bert-base-uncased\", do_lower_case=True)\n"
|
437 |
+
]
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"cell_type": "code",
|
441 |
+
"source": [
|
442 |
+
"tokenizer"
|
443 |
+
],
|
444 |
+
"metadata": {
|
445 |
+
"colab": {
|
446 |
+
"base_uri": "https://localhost:8080/"
|
447 |
+
},
|
448 |
+
"id": "lh_iyQJIhLHi",
|
449 |
+
"outputId": "effbbea1-4738-4dd6-89d0-b028e35deb69"
|
450 |
+
},
|
451 |
+
"execution_count": 7,
|
452 |
+
"outputs": [
|
453 |
+
{
|
454 |
+
"output_type": "execute_result",
|
455 |
+
"data": {
|
456 |
+
"text/plain": [
|
457 |
+
"BertTokenizer(name_or_path='bert-base-uncased', vocab_size=30522, model_max_length=512, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'}, clean_up_tokenization_spaces=True)"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
"metadata": {},
|
461 |
+
"execution_count": 7
|
462 |
+
}
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "code",
|
467 |
+
"execution_count": 8,
|
468 |
+
"metadata": {
|
469 |
+
"id": "Rs3J2e_fS16I",
|
470 |
+
"colab": {
|
471 |
+
"base_uri": "https://localhost:8080/",
|
472 |
+
"height": 597
|
473 |
+
},
|
474 |
+
"outputId": "e07d3e9e-a6de-4acb-a20f-538d33d6e370"
|
475 |
+
},
|
476 |
+
"outputs": [
|
477 |
+
{
|
478 |
+
"output_type": "execute_result",
|
479 |
+
"data": {
|
480 |
+
"text/plain": [
|
481 |
+
" Posts Labels \\\n",
|
482 |
+
"0 I quit my job of 3 years due to my stress and ... Work Stress \n",
|
483 |
+
"1 I hate my Job and have a sick note due to stre... Work Stress \n",
|
484 |
+
"2 For those who resigned this (recession) year d... Work Stress \n",
|
485 |
+
"3 Anyone always sort of stressed due to this job... Work Stress \n",
|
486 |
+
"4 Wife has been unemployed for 3 months after sh... Work Stress \n",
|
487 |
+
"... ... ... \n",
|
488 |
+
"1817 Bullard Discusses Financial Stress, Rate Incre... Financial Stress \n",
|
489 |
+
"1818 USA Financial Stress v. Equities Financial Stress \n",
|
490 |
+
"1819 Why short term financial stresses could actual... Financial Stress \n",
|
491 |
+
"1820 Please help! UK undergraduate students needed ... Financial Stress \n",
|
492 |
+
"1821 Danielle DiMartino Booth, CEO of Quill Intelli... Financial Stress \n",
|
493 |
+
"\n",
|
494 |
+
" Cleaned_Posts LabelIndices \n",
|
495 |
+
"0 i quit my job of years due to my stress and ... 3 \n",
|
496 |
+
"1 i hate my job and have a sick note due to stre... 3 \n",
|
497 |
+
"2 for those who resigned this recession year due... 3 \n",
|
498 |
+
"3 anyone always sort of stressed due to this job... 3 \n",
|
499 |
+
"4 wife has been unemployed for months after sh... 3 \n",
|
500 |
+
"... ... ... \n",
|
501 |
+
"1817 bullard discusses financial stress rate increa... 0 \n",
|
502 |
+
"1818 usa financial stress v equities 0 \n",
|
503 |
+
"1819 why short term financial stresses could actual... 0 \n",
|
504 |
+
"1820 please help uk undergraduate students needed f... 0 \n",
|
505 |
+
"1821 danielle dimartino booth ceo of quill intellig... 0 \n",
|
506 |
+
"\n",
|
507 |
+
"[1822 rows x 4 columns]"
|
508 |
+
],
|
509 |
+
"text/html": [
|
510 |
+
"\n",
|
511 |
+
" <div id=\"df-88e42b60-8aee-4c88-9fa0-0ad9f4820cf8\" class=\"colab-df-container\">\n",
|
512 |
+
" <div>\n",
|
513 |
+
"<style scoped>\n",
|
514 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
515 |
+
" vertical-align: middle;\n",
|
516 |
+
" }\n",
|
517 |
+
"\n",
|
518 |
+
" .dataframe tbody tr th {\n",
|
519 |
+
" vertical-align: top;\n",
|
520 |
+
" }\n",
|
521 |
+
"\n",
|
522 |
+
" .dataframe thead th {\n",
|
523 |
+
" text-align: right;\n",
|
524 |
+
" }\n",
|
525 |
+
"</style>\n",
|
526 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
527 |
+
" <thead>\n",
|
528 |
+
" <tr style=\"text-align: right;\">\n",
|
529 |
+
" <th></th>\n",
|
530 |
+
" <th>Posts</th>\n",
|
531 |
+
" <th>Labels</th>\n",
|
532 |
+
" <th>Cleaned_Posts</th>\n",
|
533 |
+
" <th>LabelIndices</th>\n",
|
534 |
+
" </tr>\n",
|
535 |
+
" </thead>\n",
|
536 |
+
" <tbody>\n",
|
537 |
+
" <tr>\n",
|
538 |
+
" <th>0</th>\n",
|
539 |
+
" <td>I quit my job of 3 years due to my stress and ...</td>\n",
|
540 |
+
" <td>Work Stress</td>\n",
|
541 |
+
" <td>i quit my job of years due to my stress and ...</td>\n",
|
542 |
+
" <td>3</td>\n",
|
543 |
+
" </tr>\n",
|
544 |
+
" <tr>\n",
|
545 |
+
" <th>1</th>\n",
|
546 |
+
" <td>I hate my Job and have a sick note due to stre...</td>\n",
|
547 |
+
" <td>Work Stress</td>\n",
|
548 |
+
" <td>i hate my job and have a sick note due to stre...</td>\n",
|
549 |
+
" <td>3</td>\n",
|
550 |
+
" </tr>\n",
|
551 |
+
" <tr>\n",
|
552 |
+
" <th>2</th>\n",
|
553 |
+
" <td>For those who resigned this (recession) year d...</td>\n",
|
554 |
+
" <td>Work Stress</td>\n",
|
555 |
+
" <td>for those who resigned this recession year due...</td>\n",
|
556 |
+
" <td>3</td>\n",
|
557 |
+
" </tr>\n",
|
558 |
+
" <tr>\n",
|
559 |
+
" <th>3</th>\n",
|
560 |
+
" <td>Anyone always sort of stressed due to this job...</td>\n",
|
561 |
+
" <td>Work Stress</td>\n",
|
562 |
+
" <td>anyone always sort of stressed due to this job...</td>\n",
|
563 |
+
" <td>3</td>\n",
|
564 |
+
" </tr>\n",
|
565 |
+
" <tr>\n",
|
566 |
+
" <th>4</th>\n",
|
567 |
+
" <td>Wife has been unemployed for 3 months after sh...</td>\n",
|
568 |
+
" <td>Work Stress</td>\n",
|
569 |
+
" <td>wife has been unemployed for months after sh...</td>\n",
|
570 |
+
" <td>3</td>\n",
|
571 |
+
" </tr>\n",
|
572 |
+
" <tr>\n",
|
573 |
+
" <th>...</th>\n",
|
574 |
+
" <td>...</td>\n",
|
575 |
+
" <td>...</td>\n",
|
576 |
+
" <td>...</td>\n",
|
577 |
+
" <td>...</td>\n",
|
578 |
+
" </tr>\n",
|
579 |
+
" <tr>\n",
|
580 |
+
" <th>1817</th>\n",
|
581 |
+
" <td>Bullard Discusses Financial Stress, Rate Incre...</td>\n",
|
582 |
+
" <td>Financial Stress</td>\n",
|
583 |
+
" <td>bullard discusses financial stress rate increa...</td>\n",
|
584 |
+
" <td>0</td>\n",
|
585 |
+
" </tr>\n",
|
586 |
+
" <tr>\n",
|
587 |
+
" <th>1818</th>\n",
|
588 |
+
" <td>USA Financial Stress v. Equities</td>\n",
|
589 |
+
" <td>Financial Stress</td>\n",
|
590 |
+
" <td>usa financial stress v equities</td>\n",
|
591 |
+
" <td>0</td>\n",
|
592 |
+
" </tr>\n",
|
593 |
+
" <tr>\n",
|
594 |
+
" <th>1819</th>\n",
|
595 |
+
" <td>Why short term financial stresses could actual...</td>\n",
|
596 |
+
" <td>Financial Stress</td>\n",
|
597 |
+
" <td>why short term financial stresses could actual...</td>\n",
|
598 |
+
" <td>0</td>\n",
|
599 |
+
" </tr>\n",
|
600 |
+
" <tr>\n",
|
601 |
+
" <th>1820</th>\n",
|
602 |
+
" <td>Please help! UK undergraduate students needed ...</td>\n",
|
603 |
+
" <td>Financial Stress</td>\n",
|
604 |
+
" <td>please help uk undergraduate students needed f...</td>\n",
|
605 |
+
" <td>0</td>\n",
|
606 |
+
" </tr>\n",
|
607 |
+
" <tr>\n",
|
608 |
+
" <th>1821</th>\n",
|
609 |
+
" <td>Danielle DiMartino Booth, CEO of Quill Intelli...</td>\n",
|
610 |
+
" <td>Financial Stress</td>\n",
|
611 |
+
" <td>danielle dimartino booth ceo of quill intellig...</td>\n",
|
612 |
+
" <td>0</td>\n",
|
613 |
+
" </tr>\n",
|
614 |
+
" </tbody>\n",
|
615 |
+
"</table>\n",
|
616 |
+
"<p>1822 rows × 4 columns</p>\n",
|
617 |
+
"</div>\n",
|
618 |
+
" <div class=\"colab-df-buttons\">\n",
|
619 |
+
"\n",
|
620 |
+
" <div class=\"colab-df-container\">\n",
|
621 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-88e42b60-8aee-4c88-9fa0-0ad9f4820cf8')\"\n",
|
622 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
623 |
+
" style=\"display:none;\">\n",
|
624 |
+
"\n",
|
625 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
626 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
627 |
+
" </svg>\n",
|
628 |
+
" </button>\n",
|
629 |
+
"\n",
|
630 |
+
" <style>\n",
|
631 |
+
" .colab-df-container {\n",
|
632 |
+
" display:flex;\n",
|
633 |
+
" gap: 12px;\n",
|
634 |
+
" }\n",
|
635 |
+
"\n",
|
636 |
+
" .colab-df-convert {\n",
|
637 |
+
" background-color: #E8F0FE;\n",
|
638 |
+
" border: none;\n",
|
639 |
+
" border-radius: 50%;\n",
|
640 |
+
" cursor: pointer;\n",
|
641 |
+
" display: none;\n",
|
642 |
+
" fill: #1967D2;\n",
|
643 |
+
" height: 32px;\n",
|
644 |
+
" padding: 0 0 0 0;\n",
|
645 |
+
" width: 32px;\n",
|
646 |
+
" }\n",
|
647 |
+
"\n",
|
648 |
+
" .colab-df-convert:hover {\n",
|
649 |
+
" background-color: #E2EBFA;\n",
|
650 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
651 |
+
" fill: #174EA6;\n",
|
652 |
+
" }\n",
|
653 |
+
"\n",
|
654 |
+
" .colab-df-buttons div {\n",
|
655 |
+
" margin-bottom: 4px;\n",
|
656 |
+
" }\n",
|
657 |
+
"\n",
|
658 |
+
" [theme=dark] .colab-df-convert {\n",
|
659 |
+
" background-color: #3B4455;\n",
|
660 |
+
" fill: #D2E3FC;\n",
|
661 |
+
" }\n",
|
662 |
+
"\n",
|
663 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
664 |
+
" background-color: #434B5C;\n",
|
665 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
666 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
667 |
+
" fill: #FFFFFF;\n",
|
668 |
+
" }\n",
|
669 |
+
" </style>\n",
|
670 |
+
"\n",
|
671 |
+
" <script>\n",
|
672 |
+
" const buttonEl =\n",
|
673 |
+
" document.querySelector('#df-88e42b60-8aee-4c88-9fa0-0ad9f4820cf8 button.colab-df-convert');\n",
|
674 |
+
" buttonEl.style.display =\n",
|
675 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
676 |
+
"\n",
|
677 |
+
" async function convertToInteractive(key) {\n",
|
678 |
+
" const element = document.querySelector('#df-88e42b60-8aee-4c88-9fa0-0ad9f4820cf8');\n",
|
679 |
+
" const dataTable =\n",
|
680 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
681 |
+
" [key], {});\n",
|
682 |
+
" if (!dataTable) return;\n",
|
683 |
+
"\n",
|
684 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
685 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
686 |
+
" + ' to learn more about interactive tables.';\n",
|
687 |
+
" element.innerHTML = '';\n",
|
688 |
+
" dataTable['output_type'] = 'display_data';\n",
|
689 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
690 |
+
" const docLink = document.createElement('div');\n",
|
691 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
692 |
+
" element.appendChild(docLink);\n",
|
693 |
+
" }\n",
|
694 |
+
" </script>\n",
|
695 |
+
" </div>\n",
|
696 |
+
"\n",
|
697 |
+
"\n",
|
698 |
+
"<div id=\"df-7a1ef45f-d10e-455e-9b16-01d8033d4331\">\n",
|
699 |
+
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-7a1ef45f-d10e-455e-9b16-01d8033d4331')\"\n",
|
700 |
+
" title=\"Suggest charts.\"\n",
|
701 |
+
" style=\"display:none;\">\n",
|
702 |
+
"\n",
|
703 |
+
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
704 |
+
" width=\"24px\">\n",
|
705 |
+
" <g>\n",
|
706 |
+
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
707 |
+
" </g>\n",
|
708 |
+
"</svg>\n",
|
709 |
+
" </button>\n",
|
710 |
+
"\n",
|
711 |
+
"<style>\n",
|
712 |
+
" .colab-df-quickchart {\n",
|
713 |
+
" background-color: #E8F0FE;\n",
|
714 |
+
" border: none;\n",
|
715 |
+
" border-radius: 50%;\n",
|
716 |
+
" cursor: pointer;\n",
|
717 |
+
" display: none;\n",
|
718 |
+
" fill: #1967D2;\n",
|
719 |
+
" height: 32px;\n",
|
720 |
+
" padding: 0 0 0 0;\n",
|
721 |
+
" width: 32px;\n",
|
722 |
+
" }\n",
|
723 |
+
"\n",
|
724 |
+
" .colab-df-quickchart:hover {\n",
|
725 |
+
" background-color: #E2EBFA;\n",
|
726 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
727 |
+
" fill: #174EA6;\n",
|
728 |
+
" }\n",
|
729 |
+
"\n",
|
730 |
+
" [theme=dark] .colab-df-quickchart {\n",
|
731 |
+
" background-color: #3B4455;\n",
|
732 |
+
" fill: #D2E3FC;\n",
|
733 |
+
" }\n",
|
734 |
+
"\n",
|
735 |
+
" [theme=dark] .colab-df-quickchart:hover {\n",
|
736 |
+
" background-color: #434B5C;\n",
|
737 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
738 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
739 |
+
" fill: #FFFFFF;\n",
|
740 |
+
" }\n",
|
741 |
+
"</style>\n",
|
742 |
+
"\n",
|
743 |
+
" <script>\n",
|
744 |
+
" async function quickchart(key) {\n",
|
745 |
+
" const charts = await google.colab.kernel.invokeFunction(\n",
|
746 |
+
" 'suggestCharts', [key], {});\n",
|
747 |
+
" }\n",
|
748 |
+
" (() => {\n",
|
749 |
+
" let quickchartButtonEl =\n",
|
750 |
+
" document.querySelector('#df-7a1ef45f-d10e-455e-9b16-01d8033d4331 button');\n",
|
751 |
+
" quickchartButtonEl.style.display =\n",
|
752 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
753 |
+
" })();\n",
|
754 |
+
" </script>\n",
|
755 |
+
"</div>\n",
|
756 |
+
" </div>\n",
|
757 |
+
" </div>\n"
|
758 |
+
]
|
759 |
+
},
|
760 |
+
"metadata": {},
|
761 |
+
"execution_count": 8
|
762 |
+
}
|
763 |
+
],
|
764 |
+
"source": [
|
765 |
+
"data"
|
766 |
+
]
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"cell_type": "code",
|
770 |
+
"source": [],
|
771 |
+
"metadata": {
|
772 |
+
"id": "wxVfqH-slZWd"
|
773 |
+
},
|
774 |
+
"execution_count": null,
|
775 |
+
"outputs": []
|
776 |
+
}
|
777 |
+
],
|
778 |
+
"metadata": {
|
779 |
+
"colab": {
|
780 |
+
"provenance": []
|
781 |
+
},
|
782 |
+
"kernelspec": {
|
783 |
+
"display_name": "Python 3",
|
784 |
+
"name": "python3"
|
785 |
+
},
|
786 |
+
"language_info": {
|
787 |
+
"name": "python"
|
788 |
+
},
|
789 |
+
"widgets": {
|
790 |
+
"application/vnd.jupyter.widget-state+json": {
|
791 |
+
"32a00fccb8f446359ea356e01b50be59": {
|
792 |
+
"model_module": "@jupyter-widgets/controls",
|
793 |
+
"model_name": "HBoxModel",
|
794 |
+
"model_module_version": "1.5.0",
|
795 |
+
"state": {
|
796 |
+
"_dom_classes": [],
|
797 |
+
"_model_module": "@jupyter-widgets/controls",
|
798 |
+
"_model_module_version": "1.5.0",
|
799 |
+
"_model_name": "HBoxModel",
|
800 |
+
"_view_count": null,
|
801 |
+
"_view_module": "@jupyter-widgets/controls",
|
802 |
+
"_view_module_version": "1.5.0",
|
803 |
+
"_view_name": "HBoxView",
|
804 |
+
"box_style": "",
|
805 |
+
"children": [
|
806 |
+
"IPY_MODEL_db850c05bccd4dc9af135a680bad809e",
|
807 |
+
"IPY_MODEL_99fbbbb3a9dd4bce9f79e0fa3be04e17",
|
808 |
+
"IPY_MODEL_4fab7cf2e4c54d4fbe96b8cefef8bd82"
|
809 |
+
],
|
810 |
+
"layout": "IPY_MODEL_f0f7ae319b314e309c61a0b007637b01"
|
811 |
+
}
|
812 |
+
},
|
813 |
+
"db850c05bccd4dc9af135a680bad809e": {
|
814 |
+
"model_module": "@jupyter-widgets/controls",
|
815 |
+
"model_name": "HTMLModel",
|
816 |
+
"model_module_version": "1.5.0",
|
817 |
+
"state": {
|
818 |
+
"_dom_classes": [],
|
819 |
+
"_model_module": "@jupyter-widgets/controls",
|
820 |
+
"_model_module_version": "1.5.0",
|
821 |
+
"_model_name": "HTMLModel",
|
822 |
+
"_view_count": null,
|
823 |
+
"_view_module": "@jupyter-widgets/controls",
|
824 |
+
"_view_module_version": "1.5.0",
|
825 |
+
"_view_name": "HTMLView",
|
826 |
+
"description": "",
|
827 |
+
"description_tooltip": null,
|
828 |
+
"layout": "IPY_MODEL_a6d0f7a34c5d4d3386ded0334163f67f",
|
829 |
+
"placeholder": "",
|
830 |
+
"style": "IPY_MODEL_32cb7af7887f4a8584a0069b345f9b72",
|
831 |
+
"value": "Downloading model.safetensors: 100%"
|
832 |
+
}
|
833 |
+
},
|
834 |
+
"99fbbbb3a9dd4bce9f79e0fa3be04e17": {
|
835 |
+
"model_module": "@jupyter-widgets/controls",
|
836 |
+
"model_name": "FloatProgressModel",
|
837 |
+
"model_module_version": "1.5.0",
|
838 |
+
"state": {
|
839 |
+
"_dom_classes": [],
|
840 |
+
"_model_module": "@jupyter-widgets/controls",
|
841 |
+
"_model_module_version": "1.5.0",
|
842 |
+
"_model_name": "FloatProgressModel",
|
843 |
+
"_view_count": null,
|
844 |
+
"_view_module": "@jupyter-widgets/controls",
|
845 |
+
"_view_module_version": "1.5.0",
|
846 |
+
"_view_name": "ProgressView",
|
847 |
+
"bar_style": "success",
|
848 |
+
"description": "",
|
849 |
+
"description_tooltip": null,
|
850 |
+
"layout": "IPY_MODEL_3e89a9d94cbd418f810d288add0b86a5",
|
851 |
+
"max": 440449768,
|
852 |
+
"min": 0,
|
853 |
+
"orientation": "horizontal",
|
854 |
+
"style": "IPY_MODEL_97919643cb5049d6af4f561d5abefc8a",
|
855 |
+
"value": 440449768
|
856 |
+
}
|
857 |
+
},
|
858 |
+
"4fab7cf2e4c54d4fbe96b8cefef8bd82": {
|
859 |
+
"model_module": "@jupyter-widgets/controls",
|
860 |
+
"model_name": "HTMLModel",
|
861 |
+
"model_module_version": "1.5.0",
|
862 |
+
"state": {
|
863 |
+
"_dom_classes": [],
|
864 |
+
"_model_module": "@jupyter-widgets/controls",
|
865 |
+
"_model_module_version": "1.5.0",
|
866 |
+
"_model_name": "HTMLModel",
|
867 |
+
"_view_count": null,
|
868 |
+
"_view_module": "@jupyter-widgets/controls",
|
869 |
+
"_view_module_version": "1.5.0",
|
870 |
+
"_view_name": "HTMLView",
|
871 |
+
"description": "",
|
872 |
+
"description_tooltip": null,
|
873 |
+
"layout": "IPY_MODEL_f51e8488f2544cb28b80f7bb8203a0f1",
|
874 |
+
"placeholder": "",
|
875 |
+
"style": "IPY_MODEL_c9e1e3ddf9b44ae4b7ee048aa8640987",
|
876 |
+
"value": " 440M/440M [00:04<00:00, 113MB/s]"
|
877 |
+
}
|
878 |
+
},
|
879 |
+
"f0f7ae319b314e309c61a0b007637b01": {
|
880 |
+
"model_module": "@jupyter-widgets/base",
|
881 |
+
"model_name": "LayoutModel",
|
882 |
+
"model_module_version": "1.2.0",
|
883 |
+
"state": {
|
884 |
+
"_model_module": "@jupyter-widgets/base",
|
885 |
+
"_model_module_version": "1.2.0",
|
886 |
+
"_model_name": "LayoutModel",
|
887 |
+
"_view_count": null,
|
888 |
+
"_view_module": "@jupyter-widgets/base",
|
889 |
+
"_view_module_version": "1.2.0",
|
890 |
+
"_view_name": "LayoutView",
|
891 |
+
"align_content": null,
|
892 |
+
"align_items": null,
|
893 |
+
"align_self": null,
|
894 |
+
"border": null,
|
895 |
+
"bottom": null,
|
896 |
+
"display": null,
|
897 |
+
"flex": null,
|
898 |
+
"flex_flow": null,
|
899 |
+
"grid_area": null,
|
900 |
+
"grid_auto_columns": null,
|
901 |
+
"grid_auto_flow": null,
|
902 |
+
"grid_auto_rows": null,
|
903 |
+
"grid_column": null,
|
904 |
+
"grid_gap": null,
|
905 |
+
"grid_row": null,
|
906 |
+
"grid_template_areas": null,
|
907 |
+
"grid_template_columns": null,
|
908 |
+
"grid_template_rows": null,
|
909 |
+
"height": null,
|
910 |
+
"justify_content": null,
|
911 |
+
"justify_items": null,
|
912 |
+
"left": null,
|
913 |
+
"margin": null,
|
914 |
+
"max_height": null,
|
915 |
+
"max_width": null,
|
916 |
+
"min_height": null,
|
917 |
+
"min_width": null,
|
918 |
+
"object_fit": null,
|
919 |
+
"object_position": null,
|
920 |
+
"order": null,
|
921 |
+
"overflow": null,
|
922 |
+
"overflow_x": null,
|
923 |
+
"overflow_y": null,
|
924 |
+
"padding": null,
|
925 |
+
"right": null,
|
926 |
+
"top": null,
|
927 |
+
"visibility": null,
|
928 |
+
"width": null
|
929 |
+
}
|
930 |
+
},
|
931 |
+
"a6d0f7a34c5d4d3386ded0334163f67f": {
|
932 |
+
"model_module": "@jupyter-widgets/base",
|
933 |
+
"model_name": "LayoutModel",
|
934 |
+
"model_module_version": "1.2.0",
|
935 |
+
"state": {
|
936 |
+
"_model_module": "@jupyter-widgets/base",
|
937 |
+
"_model_module_version": "1.2.0",
|
938 |
+
"_model_name": "LayoutModel",
|
939 |
+
"_view_count": null,
|
940 |
+
"_view_module": "@jupyter-widgets/base",
|
941 |
+
"_view_module_version": "1.2.0",
|
942 |
+
"_view_name": "LayoutView",
|
943 |
+
"align_content": null,
|
944 |
+
"align_items": null,
|
945 |
+
"align_self": null,
|
946 |
+
"border": null,
|
947 |
+
"bottom": null,
|
948 |
+
"display": null,
|
949 |
+
"flex": null,
|
950 |
+
"flex_flow": null,
|
951 |
+
"grid_area": null,
|
952 |
+
"grid_auto_columns": null,
|
953 |
+
"grid_auto_flow": null,
|
954 |
+
"grid_auto_rows": null,
|
955 |
+
"grid_column": null,
|
956 |
+
"grid_gap": null,
|
957 |
+
"grid_row": null,
|
958 |
+
"grid_template_areas": null,
|
959 |
+
"grid_template_columns": null,
|
960 |
+
"grid_template_rows": null,
|
961 |
+
"height": null,
|
962 |
+
"justify_content": null,
|
963 |
+
"justify_items": null,
|
964 |
+
"left": null,
|
965 |
+
"margin": null,
|
966 |
+
"max_height": null,
|
967 |
+
"max_width": null,
|
968 |
+
"min_height": null,
|
969 |
+
"min_width": null,
|
970 |
+
"object_fit": null,
|
971 |
+
"object_position": null,
|
972 |
+
"order": null,
|
973 |
+
"overflow": null,
|
974 |
+
"overflow_x": null,
|
975 |
+
"overflow_y": null,
|
976 |
+
"padding": null,
|
977 |
+
"right": null,
|
978 |
+
"top": null,
|
979 |
+
"visibility": null,
|
980 |
+
"width": null
|
981 |
+
}
|
982 |
+
},
|
983 |
+
"32cb7af7887f4a8584a0069b345f9b72": {
|
984 |
+
"model_module": "@jupyter-widgets/controls",
|
985 |
+
"model_name": "DescriptionStyleModel",
|
986 |
+
"model_module_version": "1.5.0",
|
987 |
+
"state": {
|
988 |
+
"_model_module": "@jupyter-widgets/controls",
|
989 |
+
"_model_module_version": "1.5.0",
|
990 |
+
"_model_name": "DescriptionStyleModel",
|
991 |
+
"_view_count": null,
|
992 |
+
"_view_module": "@jupyter-widgets/base",
|
993 |
+
"_view_module_version": "1.2.0",
|
994 |
+
"_view_name": "StyleView",
|
995 |
+
"description_width": ""
|
996 |
+
}
|
997 |
+
},
|
998 |
+
"3e89a9d94cbd418f810d288add0b86a5": {
|
999 |
+
"model_module": "@jupyter-widgets/base",
|
1000 |
+
"model_name": "LayoutModel",
|
1001 |
+
"model_module_version": "1.2.0",
|
1002 |
+
"state": {
|
1003 |
+
"_model_module": "@jupyter-widgets/base",
|
1004 |
+
"_model_module_version": "1.2.0",
|
1005 |
+
"_model_name": "LayoutModel",
|
1006 |
+
"_view_count": null,
|
1007 |
+
"_view_module": "@jupyter-widgets/base",
|
1008 |
+
"_view_module_version": "1.2.0",
|
1009 |
+
"_view_name": "LayoutView",
|
1010 |
+
"align_content": null,
|
1011 |
+
"align_items": null,
|
1012 |
+
"align_self": null,
|
1013 |
+
"border": null,
|
1014 |
+
"bottom": null,
|
1015 |
+
"display": null,
|
1016 |
+
"flex": null,
|
1017 |
+
"flex_flow": null,
|
1018 |
+
"grid_area": null,
|
1019 |
+
"grid_auto_columns": null,
|
1020 |
+
"grid_auto_flow": null,
|
1021 |
+
"grid_auto_rows": null,
|
1022 |
+
"grid_column": null,
|
1023 |
+
"grid_gap": null,
|
1024 |
+
"grid_row": null,
|
1025 |
+
"grid_template_areas": null,
|
1026 |
+
"grid_template_columns": null,
|
1027 |
+
"grid_template_rows": null,
|
1028 |
+
"height": null,
|
1029 |
+
"justify_content": null,
|
1030 |
+
"justify_items": null,
|
1031 |
+
"left": null,
|
1032 |
+
"margin": null,
|
1033 |
+
"max_height": null,
|
1034 |
+
"max_width": null,
|
1035 |
+
"min_height": null,
|
1036 |
+
"min_width": null,
|
1037 |
+
"object_fit": null,
|
1038 |
+
"object_position": null,
|
1039 |
+
"order": null,
|
1040 |
+
"overflow": null,
|
1041 |
+
"overflow_x": null,
|
1042 |
+
"overflow_y": null,
|
1043 |
+
"padding": null,
|
1044 |
+
"right": null,
|
1045 |
+
"top": null,
|
1046 |
+
"visibility": null,
|
1047 |
+
"width": null
|
1048 |
+
}
|
1049 |
+
},
|
1050 |
+
"97919643cb5049d6af4f561d5abefc8a": {
|
1051 |
+
"model_module": "@jupyter-widgets/controls",
|
1052 |
+
"model_name": "ProgressStyleModel",
|
1053 |
+
"model_module_version": "1.5.0",
|
1054 |
+
"state": {
|
1055 |
+
"_model_module": "@jupyter-widgets/controls",
|
1056 |
+
"_model_module_version": "1.5.0",
|
1057 |
+
"_model_name": "ProgressStyleModel",
|
1058 |
+
"_view_count": null,
|
1059 |
+
"_view_module": "@jupyter-widgets/base",
|
1060 |
+
"_view_module_version": "1.2.0",
|
1061 |
+
"_view_name": "StyleView",
|
1062 |
+
"bar_color": null,
|
1063 |
+
"description_width": ""
|
1064 |
+
}
|
1065 |
+
},
|
1066 |
+
"f51e8488f2544cb28b80f7bb8203a0f1": {
|
1067 |
+
"model_module": "@jupyter-widgets/base",
|
1068 |
+
"model_name": "LayoutModel",
|
1069 |
+
"model_module_version": "1.2.0",
|
1070 |
+
"state": {
|
1071 |
+
"_model_module": "@jupyter-widgets/base",
|
1072 |
+
"_model_module_version": "1.2.0",
|
1073 |
+
"_model_name": "LayoutModel",
|
1074 |
+
"_view_count": null,
|
1075 |
+
"_view_module": "@jupyter-widgets/base",
|
1076 |
+
"_view_module_version": "1.2.0",
|
1077 |
+
"_view_name": "LayoutView",
|
1078 |
+
"align_content": null,
|
1079 |
+
"align_items": null,
|
1080 |
+
"align_self": null,
|
1081 |
+
"border": null,
|
1082 |
+
"bottom": null,
|
1083 |
+
"display": null,
|
1084 |
+
"flex": null,
|
1085 |
+
"flex_flow": null,
|
1086 |
+
"grid_area": null,
|
1087 |
+
"grid_auto_columns": null,
|
1088 |
+
"grid_auto_flow": null,
|
1089 |
+
"grid_auto_rows": null,
|
1090 |
+
"grid_column": null,
|
1091 |
+
"grid_gap": null,
|
1092 |
+
"grid_row": null,
|
1093 |
+
"grid_template_areas": null,
|
1094 |
+
"grid_template_columns": null,
|
1095 |
+
"grid_template_rows": null,
|
1096 |
+
"height": null,
|
1097 |
+
"justify_content": null,
|
1098 |
+
"justify_items": null,
|
1099 |
+
"left": null,
|
1100 |
+
"margin": null,
|
1101 |
+
"max_height": null,
|
1102 |
+
"max_width": null,
|
1103 |
+
"min_height": null,
|
1104 |
+
"min_width": null,
|
1105 |
+
"object_fit": null,
|
1106 |
+
"object_position": null,
|
1107 |
+
"order": null,
|
1108 |
+
"overflow": null,
|
1109 |
+
"overflow_x": null,
|
1110 |
+
"overflow_y": null,
|
1111 |
+
"padding": null,
|
1112 |
+
"right": null,
|
1113 |
+
"top": null,
|
1114 |
+
"visibility": null,
|
1115 |
+
"width": null
|
1116 |
+
}
|
1117 |
+
},
|
1118 |
+
"c9e1e3ddf9b44ae4b7ee048aa8640987": {
|
1119 |
+
"model_module": "@jupyter-widgets/controls",
|
1120 |
+
"model_name": "DescriptionStyleModel",
|
1121 |
+
"model_module_version": "1.5.0",
|
1122 |
+
"state": {
|
1123 |
+
"_model_module": "@jupyter-widgets/controls",
|
1124 |
+
"_model_module_version": "1.5.0",
|
1125 |
+
"_model_name": "DescriptionStyleModel",
|
1126 |
+
"_view_count": null,
|
1127 |
+
"_view_module": "@jupyter-widgets/base",
|
1128 |
+
"_view_module_version": "1.2.0",
|
1129 |
+
"_view_name": "StyleView",
|
1130 |
+
"description_width": ""
|
1131 |
+
}
|
1132 |
+
},
|
1133 |
+
"b233a84faeeb4e6db05b54853a712306": {
|
1134 |
+
"model_module": "@jupyter-widgets/controls",
|
1135 |
+
"model_name": "HBoxModel",
|
1136 |
+
"model_module_version": "1.5.0",
|
1137 |
+
"state": {
|
1138 |
+
"_dom_classes": [],
|
1139 |
+
"_model_module": "@jupyter-widgets/controls",
|
1140 |
+
"_model_module_version": "1.5.0",
|
1141 |
+
"_model_name": "HBoxModel",
|
1142 |
+
"_view_count": null,
|
1143 |
+
"_view_module": "@jupyter-widgets/controls",
|
1144 |
+
"_view_module_version": "1.5.0",
|
1145 |
+
"_view_name": "HBoxView",
|
1146 |
+
"box_style": "",
|
1147 |
+
"children": [
|
1148 |
+
"IPY_MODEL_edf4bc0025474420b8b509f50c633dac",
|
1149 |
+
"IPY_MODEL_33557d21210142bab4604b1a25d13c1f",
|
1150 |
+
"IPY_MODEL_569657898c0a41f6807149b75056fe30"
|
1151 |
+
],
|
1152 |
+
"layout": "IPY_MODEL_d756b7b7e64746df8910c893fd669997"
|
1153 |
+
}
|
1154 |
+
},
|
1155 |
+
"edf4bc0025474420b8b509f50c633dac": {
|
1156 |
+
"model_module": "@jupyter-widgets/controls",
|
1157 |
+
"model_name": "HTMLModel",
|
1158 |
+
"model_module_version": "1.5.0",
|
1159 |
+
"state": {
|
1160 |
+
"_dom_classes": [],
|
1161 |
+
"_model_module": "@jupyter-widgets/controls",
|
1162 |
+
"_model_module_version": "1.5.0",
|
1163 |
+
"_model_name": "HTMLModel",
|
1164 |
+
"_view_count": null,
|
1165 |
+
"_view_module": "@jupyter-widgets/controls",
|
1166 |
+
"_view_module_version": "1.5.0",
|
1167 |
+
"_view_name": "HTMLView",
|
1168 |
+
"description": "",
|
1169 |
+
"description_tooltip": null,
|
1170 |
+
"layout": "IPY_MODEL_2d8c70e1541c45968aac54e660e42290",
|
1171 |
+
"placeholder": "",
|
1172 |
+
"style": "IPY_MODEL_b11378b2e3f94ffc955357df9a1e79a6",
|
1173 |
+
"value": "Downloading (…)solve/main/vocab.txt: 100%"
|
1174 |
+
}
|
1175 |
+
},
|
1176 |
+
"33557d21210142bab4604b1a25d13c1f": {
|
1177 |
+
"model_module": "@jupyter-widgets/controls",
|
1178 |
+
"model_name": "FloatProgressModel",
|
1179 |
+
"model_module_version": "1.5.0",
|
1180 |
+
"state": {
|
1181 |
+
"_dom_classes": [],
|
1182 |
+
"_model_module": "@jupyter-widgets/controls",
|
1183 |
+
"_model_module_version": "1.5.0",
|
1184 |
+
"_model_name": "FloatProgressModel",
|
1185 |
+
"_view_count": null,
|
1186 |
+
"_view_module": "@jupyter-widgets/controls",
|
1187 |
+
"_view_module_version": "1.5.0",
|
1188 |
+
"_view_name": "ProgressView",
|
1189 |
+
"bar_style": "success",
|
1190 |
+
"description": "",
|
1191 |
+
"description_tooltip": null,
|
1192 |
+
"layout": "IPY_MODEL_d3cd5ae5c44e4fc291161543e590d5f2",
|
1193 |
+
"max": 231508,
|
1194 |
+
"min": 0,
|
1195 |
+
"orientation": "horizontal",
|
1196 |
+
"style": "IPY_MODEL_78d0469b165645388939e9de25a485d1",
|
1197 |
+
"value": 231508
|
1198 |
+
}
|
1199 |
+
},
|
1200 |
+
"569657898c0a41f6807149b75056fe30": {
|
1201 |
+
"model_module": "@jupyter-widgets/controls",
|
1202 |
+
"model_name": "HTMLModel",
|
1203 |
+
"model_module_version": "1.5.0",
|
1204 |
+
"state": {
|
1205 |
+
"_dom_classes": [],
|
1206 |
+
"_model_module": "@jupyter-widgets/controls",
|
1207 |
+
"_model_module_version": "1.5.0",
|
1208 |
+
"_model_name": "HTMLModel",
|
1209 |
+
"_view_count": null,
|
1210 |
+
"_view_module": "@jupyter-widgets/controls",
|
1211 |
+
"_view_module_version": "1.5.0",
|
1212 |
+
"_view_name": "HTMLView",
|
1213 |
+
"description": "",
|
1214 |
+
"description_tooltip": null,
|
1215 |
+
"layout": "IPY_MODEL_505fa60eaf34444fb5bbf15cfb26eea0",
|
1216 |
+
"placeholder": "",
|
1217 |
+
"style": "IPY_MODEL_616d49bd01034f3ba3475c3fb5678c8c",
|
1218 |
+
"value": " 232k/232k [00:00<00:00, 8.55MB/s]"
|
1219 |
+
}
|
1220 |
+
},
|
1221 |
+
"d756b7b7e64746df8910c893fd669997": {
|
1222 |
+
"model_module": "@jupyter-widgets/base",
|
1223 |
+
"model_name": "LayoutModel",
|
1224 |
+
"model_module_version": "1.2.0",
|
1225 |
+
"state": {
|
1226 |
+
"_model_module": "@jupyter-widgets/base",
|
1227 |
+
"_model_module_version": "1.2.0",
|
1228 |
+
"_model_name": "LayoutModel",
|
1229 |
+
"_view_count": null,
|
1230 |
+
"_view_module": "@jupyter-widgets/base",
|
1231 |
+
"_view_module_version": "1.2.0",
|
1232 |
+
"_view_name": "LayoutView",
|
1233 |
+
"align_content": null,
|
1234 |
+
"align_items": null,
|
1235 |
+
"align_self": null,
|
1236 |
+
"border": null,
|
1237 |
+
"bottom": null,
|
1238 |
+
"display": null,
|
1239 |
+
"flex": null,
|
1240 |
+
"flex_flow": null,
|
1241 |
+
"grid_area": null,
|
1242 |
+
"grid_auto_columns": null,
|
1243 |
+
"grid_auto_flow": null,
|
1244 |
+
"grid_auto_rows": null,
|
1245 |
+
"grid_column": null,
|
1246 |
+
"grid_gap": null,
|
1247 |
+
"grid_row": null,
|
1248 |
+
"grid_template_areas": null,
|
1249 |
+
"grid_template_columns": null,
|
1250 |
+
"grid_template_rows": null,
|
1251 |
+
"height": null,
|
1252 |
+
"justify_content": null,
|
1253 |
+
"justify_items": null,
|
1254 |
+
"left": null,
|
1255 |
+
"margin": null,
|
1256 |
+
"max_height": null,
|
1257 |
+
"max_width": null,
|
1258 |
+
"min_height": null,
|
1259 |
+
"min_width": null,
|
1260 |
+
"object_fit": null,
|
1261 |
+
"object_position": null,
|
1262 |
+
"order": null,
|
1263 |
+
"overflow": null,
|
1264 |
+
"overflow_x": null,
|
1265 |
+
"overflow_y": null,
|
1266 |
+
"padding": null,
|
1267 |
+
"right": null,
|
1268 |
+
"top": null,
|
1269 |
+
"visibility": null,
|
1270 |
+
"width": null
|
1271 |
+
}
|
1272 |
+
},
|
1273 |
+
"2d8c70e1541c45968aac54e660e42290": {
|
1274 |
+
"model_module": "@jupyter-widgets/base",
|
1275 |
+
"model_name": "LayoutModel",
|
1276 |
+
"model_module_version": "1.2.0",
|
1277 |
+
"state": {
|
1278 |
+
"_model_module": "@jupyter-widgets/base",
|
1279 |
+
"_model_module_version": "1.2.0",
|
1280 |
+
"_model_name": "LayoutModel",
|
1281 |
+
"_view_count": null,
|
1282 |
+
"_view_module": "@jupyter-widgets/base",
|
1283 |
+
"_view_module_version": "1.2.0",
|
1284 |
+
"_view_name": "LayoutView",
|
1285 |
+
"align_content": null,
|
1286 |
+
"align_items": null,
|
1287 |
+
"align_self": null,
|
1288 |
+
"border": null,
|
1289 |
+
"bottom": null,
|
1290 |
+
"display": null,
|
1291 |
+
"flex": null,
|
1292 |
+
"flex_flow": null,
|
1293 |
+
"grid_area": null,
|
1294 |
+
"grid_auto_columns": null,
|
1295 |
+
"grid_auto_flow": null,
|
1296 |
+
"grid_auto_rows": null,
|
1297 |
+
"grid_column": null,
|
1298 |
+
"grid_gap": null,
|
1299 |
+
"grid_row": null,
|
1300 |
+
"grid_template_areas": null,
|
1301 |
+
"grid_template_columns": null,
|
1302 |
+
"grid_template_rows": null,
|
1303 |
+
"height": null,
|
1304 |
+
"justify_content": null,
|
1305 |
+
"justify_items": null,
|
1306 |
+
"left": null,
|
1307 |
+
"margin": null,
|
1308 |
+
"max_height": null,
|
1309 |
+
"max_width": null,
|
1310 |
+
"min_height": null,
|
1311 |
+
"min_width": null,
|
1312 |
+
"object_fit": null,
|
1313 |
+
"object_position": null,
|
1314 |
+
"order": null,
|
1315 |
+
"overflow": null,
|
1316 |
+
"overflow_x": null,
|
1317 |
+
"overflow_y": null,
|
1318 |
+
"padding": null,
|
1319 |
+
"right": null,
|
1320 |
+
"top": null,
|
1321 |
+
"visibility": null,
|
1322 |
+
"width": null
|
1323 |
+
}
|
1324 |
+
},
|
1325 |
+
"b11378b2e3f94ffc955357df9a1e79a6": {
|
1326 |
+
"model_module": "@jupyter-widgets/controls",
|
1327 |
+
"model_name": "DescriptionStyleModel",
|
1328 |
+
"model_module_version": "1.5.0",
|
1329 |
+
"state": {
|
1330 |
+
"_model_module": "@jupyter-widgets/controls",
|
1331 |
+
"_model_module_version": "1.5.0",
|
1332 |
+
"_model_name": "DescriptionStyleModel",
|
1333 |
+
"_view_count": null,
|
1334 |
+
"_view_module": "@jupyter-widgets/base",
|
1335 |
+
"_view_module_version": "1.2.0",
|
1336 |
+
"_view_name": "StyleView",
|
1337 |
+
"description_width": ""
|
1338 |
+
}
|
1339 |
+
},
|
1340 |
+
"d3cd5ae5c44e4fc291161543e590d5f2": {
|
1341 |
+
"model_module": "@jupyter-widgets/base",
|
1342 |
+
"model_name": "LayoutModel",
|
1343 |
+
"model_module_version": "1.2.0",
|
1344 |
+
"state": {
|
1345 |
+
"_model_module": "@jupyter-widgets/base",
|
1346 |
+
"_model_module_version": "1.2.0",
|
1347 |
+
"_model_name": "LayoutModel",
|
1348 |
+
"_view_count": null,
|
1349 |
+
"_view_module": "@jupyter-widgets/base",
|
1350 |
+
"_view_module_version": "1.2.0",
|
1351 |
+
"_view_name": "LayoutView",
|
1352 |
+
"align_content": null,
|
1353 |
+
"align_items": null,
|
1354 |
+
"align_self": null,
|
1355 |
+
"border": null,
|
1356 |
+
"bottom": null,
|
1357 |
+
"display": null,
|
1358 |
+
"flex": null,
|
1359 |
+
"flex_flow": null,
|
1360 |
+
"grid_area": null,
|
1361 |
+
"grid_auto_columns": null,
|
1362 |
+
"grid_auto_flow": null,
|
1363 |
+
"grid_auto_rows": null,
|
1364 |
+
"grid_column": null,
|
1365 |
+
"grid_gap": null,
|
1366 |
+
"grid_row": null,
|
1367 |
+
"grid_template_areas": null,
|
1368 |
+
"grid_template_columns": null,
|
1369 |
+
"grid_template_rows": null,
|
1370 |
+
"height": null,
|
1371 |
+
"justify_content": null,
|
1372 |
+
"justify_items": null,
|
1373 |
+
"left": null,
|
1374 |
+
"margin": null,
|
1375 |
+
"max_height": null,
|
1376 |
+
"max_width": null,
|
1377 |
+
"min_height": null,
|
1378 |
+
"min_width": null,
|
1379 |
+
"object_fit": null,
|
1380 |
+
"object_position": null,
|
1381 |
+
"order": null,
|
1382 |
+
"overflow": null,
|
1383 |
+
"overflow_x": null,
|
1384 |
+
"overflow_y": null,
|
1385 |
+
"padding": null,
|
1386 |
+
"right": null,
|
1387 |
+
"top": null,
|
1388 |
+
"visibility": null,
|
1389 |
+
"width": null
|
1390 |
+
}
|
1391 |
+
},
|
1392 |
+
"78d0469b165645388939e9de25a485d1": {
|
1393 |
+
"model_module": "@jupyter-widgets/controls",
|
1394 |
+
"model_name": "ProgressStyleModel",
|
1395 |
+
"model_module_version": "1.5.0",
|
1396 |
+
"state": {
|
1397 |
+
"_model_module": "@jupyter-widgets/controls",
|
1398 |
+
"_model_module_version": "1.5.0",
|
1399 |
+
"_model_name": "ProgressStyleModel",
|
1400 |
+
"_view_count": null,
|
1401 |
+
"_view_module": "@jupyter-widgets/base",
|
1402 |
+
"_view_module_version": "1.2.0",
|
1403 |
+
"_view_name": "StyleView",
|
1404 |
+
"bar_color": null,
|
1405 |
+
"description_width": ""
|
1406 |
+
}
|
1407 |
+
},
|
1408 |
+
"505fa60eaf34444fb5bbf15cfb26eea0": {
|
1409 |
+
"model_module": "@jupyter-widgets/base",
|
1410 |
+
"model_name": "LayoutModel",
|
1411 |
+
"model_module_version": "1.2.0",
|
1412 |
+
"state": {
|
1413 |
+
"_model_module": "@jupyter-widgets/base",
|
1414 |
+
"_model_module_version": "1.2.0",
|
1415 |
+
"_model_name": "LayoutModel",
|
1416 |
+
"_view_count": null,
|
1417 |
+
"_view_module": "@jupyter-widgets/base",
|
1418 |
+
"_view_module_version": "1.2.0",
|
1419 |
+
"_view_name": "LayoutView",
|
1420 |
+
"align_content": null,
|
1421 |
+
"align_items": null,
|
1422 |
+
"align_self": null,
|
1423 |
+
"border": null,
|
1424 |
+
"bottom": null,
|
1425 |
+
"display": null,
|
1426 |
+
"flex": null,
|
1427 |
+
"flex_flow": null,
|
1428 |
+
"grid_area": null,
|
1429 |
+
"grid_auto_columns": null,
|
1430 |
+
"grid_auto_flow": null,
|
1431 |
+
"grid_auto_rows": null,
|
1432 |
+
"grid_column": null,
|
1433 |
+
"grid_gap": null,
|
1434 |
+
"grid_row": null,
|
1435 |
+
"grid_template_areas": null,
|
1436 |
+
"grid_template_columns": null,
|
1437 |
+
"grid_template_rows": null,
|
1438 |
+
"height": null,
|
1439 |
+
"justify_content": null,
|
1440 |
+
"justify_items": null,
|
1441 |
+
"left": null,
|
1442 |
+
"margin": null,
|
1443 |
+
"max_height": null,
|
1444 |
+
"max_width": null,
|
1445 |
+
"min_height": null,
|
1446 |
+
"min_width": null,
|
1447 |
+
"object_fit": null,
|
1448 |
+
"object_position": null,
|
1449 |
+
"order": null,
|
1450 |
+
"overflow": null,
|
1451 |
+
"overflow_x": null,
|
1452 |
+
"overflow_y": null,
|
1453 |
+
"padding": null,
|
1454 |
+
"right": null,
|
1455 |
+
"top": null,
|
1456 |
+
"visibility": null,
|
1457 |
+
"width": null
|
1458 |
+
}
|
1459 |
+
},
|
1460 |
+
"616d49bd01034f3ba3475c3fb5678c8c": {
|
1461 |
+
"model_module": "@jupyter-widgets/controls",
|
1462 |
+
"model_name": "DescriptionStyleModel",
|
1463 |
+
"model_module_version": "1.5.0",
|
1464 |
+
"state": {
|
1465 |
+
"_model_module": "@jupyter-widgets/controls",
|
1466 |
+
"_model_module_version": "1.5.0",
|
1467 |
+
"_model_name": "DescriptionStyleModel",
|
1468 |
+
"_view_count": null,
|
1469 |
+
"_view_module": "@jupyter-widgets/base",
|
1470 |
+
"_view_module_version": "1.2.0",
|
1471 |
+
"_view_name": "StyleView",
|
1472 |
+
"description_width": ""
|
1473 |
+
}
|
1474 |
+
},
|
1475 |
+
"47380f5fb7a84117a5111b793112ccb7": {
|
1476 |
+
"model_module": "@jupyter-widgets/controls",
|
1477 |
+
"model_name": "HBoxModel",
|
1478 |
+
"model_module_version": "1.5.0",
|
1479 |
+
"state": {
|
1480 |
+
"_dom_classes": [],
|
1481 |
+
"_model_module": "@jupyter-widgets/controls",
|
1482 |
+
"_model_module_version": "1.5.0",
|
1483 |
+
"_model_name": "HBoxModel",
|
1484 |
+
"_view_count": null,
|
1485 |
+
"_view_module": "@jupyter-widgets/controls",
|
1486 |
+
"_view_module_version": "1.5.0",
|
1487 |
+
"_view_name": "HBoxView",
|
1488 |
+
"box_style": "",
|
1489 |
+
"children": [
|
1490 |
+
"IPY_MODEL_dac124b1a57547fca17d82f6d0c657a1",
|
1491 |
+
"IPY_MODEL_d7dba2f6840f4fcc8f40c19dc00728aa",
|
1492 |
+
"IPY_MODEL_911a8f4abac94139bff29856dd388d66"
|
1493 |
+
],
|
1494 |
+
"layout": "IPY_MODEL_f5d8a137a5464cc8b65234113ccb3035"
|
1495 |
+
}
|
1496 |
+
},
|
1497 |
+
"dac124b1a57547fca17d82f6d0c657a1": {
|
1498 |
+
"model_module": "@jupyter-widgets/controls",
|
1499 |
+
"model_name": "HTMLModel",
|
1500 |
+
"model_module_version": "1.5.0",
|
1501 |
+
"state": {
|
1502 |
+
"_dom_classes": [],
|
1503 |
+
"_model_module": "@jupyter-widgets/controls",
|
1504 |
+
"_model_module_version": "1.5.0",
|
1505 |
+
"_model_name": "HTMLModel",
|
1506 |
+
"_view_count": null,
|
1507 |
+
"_view_module": "@jupyter-widgets/controls",
|
1508 |
+
"_view_module_version": "1.5.0",
|
1509 |
+
"_view_name": "HTMLView",
|
1510 |
+
"description": "",
|
1511 |
+
"description_tooltip": null,
|
1512 |
+
"layout": "IPY_MODEL_ae330ca3db674b19b221dc6b959a849c",
|
1513 |
+
"placeholder": "",
|
1514 |
+
"style": "IPY_MODEL_f119e54274584cce9994da81e3088f31",
|
1515 |
+
"value": "Downloading (…)okenizer_config.json: 100%"
|
1516 |
+
}
|
1517 |
+
},
|
1518 |
+
"d7dba2f6840f4fcc8f40c19dc00728aa": {
|
1519 |
+
"model_module": "@jupyter-widgets/controls",
|
1520 |
+
"model_name": "FloatProgressModel",
|
1521 |
+
"model_module_version": "1.5.0",
|
1522 |
+
"state": {
|
1523 |
+
"_dom_classes": [],
|
1524 |
+
"_model_module": "@jupyter-widgets/controls",
|
1525 |
+
"_model_module_version": "1.5.0",
|
1526 |
+
"_model_name": "FloatProgressModel",
|
1527 |
+
"_view_count": null,
|
1528 |
+
"_view_module": "@jupyter-widgets/controls",
|
1529 |
+
"_view_module_version": "1.5.0",
|
1530 |
+
"_view_name": "ProgressView",
|
1531 |
+
"bar_style": "success",
|
1532 |
+
"description": "",
|
1533 |
+
"description_tooltip": null,
|
1534 |
+
"layout": "IPY_MODEL_162bbf7db0f04757b32f12342ea1b469",
|
1535 |
+
"max": 28,
|
1536 |
+
"min": 0,
|
1537 |
+
"orientation": "horizontal",
|
1538 |
+
"style": "IPY_MODEL_438c3def082e4ee4b22e213a85263e95",
|
1539 |
+
"value": 28
|
1540 |
+
}
|
1541 |
+
},
|
1542 |
+
"911a8f4abac94139bff29856dd388d66": {
|
1543 |
+
"model_module": "@jupyter-widgets/controls",
|
1544 |
+
"model_name": "HTMLModel",
|
1545 |
+
"model_module_version": "1.5.0",
|
1546 |
+
"state": {
|
1547 |
+
"_dom_classes": [],
|
1548 |
+
"_model_module": "@jupyter-widgets/controls",
|
1549 |
+
"_model_module_version": "1.5.0",
|
1550 |
+
"_model_name": "HTMLModel",
|
1551 |
+
"_view_count": null,
|
1552 |
+
"_view_module": "@jupyter-widgets/controls",
|
1553 |
+
"_view_module_version": "1.5.0",
|
1554 |
+
"_view_name": "HTMLView",
|
1555 |
+
"description": "",
|
1556 |
+
"description_tooltip": null,
|
1557 |
+
"layout": "IPY_MODEL_566ff1a7d087482d8dff86e81c408cf8",
|
1558 |
+
"placeholder": "",
|
1559 |
+
"style": "IPY_MODEL_7bec7296065e48739e67e498beb93a61",
|
1560 |
+
"value": " 28.0/28.0 [00:00<00:00, 1.69kB/s]"
|
1561 |
+
}
|
1562 |
+
},
|
1563 |
+
"f5d8a137a5464cc8b65234113ccb3035": {
|
1564 |
+
"model_module": "@jupyter-widgets/base",
|
1565 |
+
"model_name": "LayoutModel",
|
1566 |
+
"model_module_version": "1.2.0",
|
1567 |
+
"state": {
|
1568 |
+
"_model_module": "@jupyter-widgets/base",
|
1569 |
+
"_model_module_version": "1.2.0",
|
1570 |
+
"_model_name": "LayoutModel",
|
1571 |
+
"_view_count": null,
|
1572 |
+
"_view_module": "@jupyter-widgets/base",
|
1573 |
+
"_view_module_version": "1.2.0",
|
1574 |
+
"_view_name": "LayoutView",
|
1575 |
+
"align_content": null,
|
1576 |
+
"align_items": null,
|
1577 |
+
"align_self": null,
|
1578 |
+
"border": null,
|
1579 |
+
"bottom": null,
|
1580 |
+
"display": null,
|
1581 |
+
"flex": null,
|
1582 |
+
"flex_flow": null,
|
1583 |
+
"grid_area": null,
|
1584 |
+
"grid_auto_columns": null,
|
1585 |
+
"grid_auto_flow": null,
|
1586 |
+
"grid_auto_rows": null,
|
1587 |
+
"grid_column": null,
|
1588 |
+
"grid_gap": null,
|
1589 |
+
"grid_row": null,
|
1590 |
+
"grid_template_areas": null,
|
1591 |
+
"grid_template_columns": null,
|
1592 |
+
"grid_template_rows": null,
|
1593 |
+
"height": null,
|
1594 |
+
"justify_content": null,
|
1595 |
+
"justify_items": null,
|
1596 |
+
"left": null,
|
1597 |
+
"margin": null,
|
1598 |
+
"max_height": null,
|
1599 |
+
"max_width": null,
|
1600 |
+
"min_height": null,
|
1601 |
+
"min_width": null,
|
1602 |
+
"object_fit": null,
|
1603 |
+
"object_position": null,
|
1604 |
+
"order": null,
|
1605 |
+
"overflow": null,
|
1606 |
+
"overflow_x": null,
|
1607 |
+
"overflow_y": null,
|
1608 |
+
"padding": null,
|
1609 |
+
"right": null,
|
1610 |
+
"top": null,
|
1611 |
+
"visibility": null,
|
1612 |
+
"width": null
|
1613 |
+
}
|
1614 |
+
},
|
1615 |
+
"ae330ca3db674b19b221dc6b959a849c": {
|
1616 |
+
"model_module": "@jupyter-widgets/base",
|
1617 |
+
"model_name": "LayoutModel",
|
1618 |
+
"model_module_version": "1.2.0",
|
1619 |
+
"state": {
|
1620 |
+
"_model_module": "@jupyter-widgets/base",
|
1621 |
+
"_model_module_version": "1.2.0",
|
1622 |
+
"_model_name": "LayoutModel",
|
1623 |
+
"_view_count": null,
|
1624 |
+
"_view_module": "@jupyter-widgets/base",
|
1625 |
+
"_view_module_version": "1.2.0",
|
1626 |
+
"_view_name": "LayoutView",
|
1627 |
+
"align_content": null,
|
1628 |
+
"align_items": null,
|
1629 |
+
"align_self": null,
|
1630 |
+
"border": null,
|
1631 |
+
"bottom": null,
|
1632 |
+
"display": null,
|
1633 |
+
"flex": null,
|
1634 |
+
"flex_flow": null,
|
1635 |
+
"grid_area": null,
|
1636 |
+
"grid_auto_columns": null,
|
1637 |
+
"grid_auto_flow": null,
|
1638 |
+
"grid_auto_rows": null,
|
1639 |
+
"grid_column": null,
|
1640 |
+
"grid_gap": null,
|
1641 |
+
"grid_row": null,
|
1642 |
+
"grid_template_areas": null,
|
1643 |
+
"grid_template_columns": null,
|
1644 |
+
"grid_template_rows": null,
|
1645 |
+
"height": null,
|
1646 |
+
"justify_content": null,
|
1647 |
+
"justify_items": null,
|
1648 |
+
"left": null,
|
1649 |
+
"margin": null,
|
1650 |
+
"max_height": null,
|
1651 |
+
"max_width": null,
|
1652 |
+
"min_height": null,
|
1653 |
+
"min_width": null,
|
1654 |
+
"object_fit": null,
|
1655 |
+
"object_position": null,
|
1656 |
+
"order": null,
|
1657 |
+
"overflow": null,
|
1658 |
+
"overflow_x": null,
|
1659 |
+
"overflow_y": null,
|
1660 |
+
"padding": null,
|
1661 |
+
"right": null,
|
1662 |
+
"top": null,
|
1663 |
+
"visibility": null,
|
1664 |
+
"width": null
|
1665 |
+
}
|
1666 |
+
},
|
1667 |
+
"f119e54274584cce9994da81e3088f31": {
|
1668 |
+
"model_module": "@jupyter-widgets/controls",
|
1669 |
+
"model_name": "DescriptionStyleModel",
|
1670 |
+
"model_module_version": "1.5.0",
|
1671 |
+
"state": {
|
1672 |
+
"_model_module": "@jupyter-widgets/controls",
|
1673 |
+
"_model_module_version": "1.5.0",
|
1674 |
+
"_model_name": "DescriptionStyleModel",
|
1675 |
+
"_view_count": null,
|
1676 |
+
"_view_module": "@jupyter-widgets/base",
|
1677 |
+
"_view_module_version": "1.2.0",
|
1678 |
+
"_view_name": "StyleView",
|
1679 |
+
"description_width": ""
|
1680 |
+
}
|
1681 |
+
},
|
1682 |
+
"162bbf7db0f04757b32f12342ea1b469": {
|
1683 |
+
"model_module": "@jupyter-widgets/base",
|
1684 |
+
"model_name": "LayoutModel",
|
1685 |
+
"model_module_version": "1.2.0",
|
1686 |
+
"state": {
|
1687 |
+
"_model_module": "@jupyter-widgets/base",
|
1688 |
+
"_model_module_version": "1.2.0",
|
1689 |
+
"_model_name": "LayoutModel",
|
1690 |
+
"_view_count": null,
|
1691 |
+
"_view_module": "@jupyter-widgets/base",
|
1692 |
+
"_view_module_version": "1.2.0",
|
1693 |
+
"_view_name": "LayoutView",
|
1694 |
+
"align_content": null,
|
1695 |
+
"align_items": null,
|
1696 |
+
"align_self": null,
|
1697 |
+
"border": null,
|
1698 |
+
"bottom": null,
|
1699 |
+
"display": null,
|
1700 |
+
"flex": null,
|
1701 |
+
"flex_flow": null,
|
1702 |
+
"grid_area": null,
|
1703 |
+
"grid_auto_columns": null,
|
1704 |
+
"grid_auto_flow": null,
|
1705 |
+
"grid_auto_rows": null,
|
1706 |
+
"grid_column": null,
|
1707 |
+
"grid_gap": null,
|
1708 |
+
"grid_row": null,
|
1709 |
+
"grid_template_areas": null,
|
1710 |
+
"grid_template_columns": null,
|
1711 |
+
"grid_template_rows": null,
|
1712 |
+
"height": null,
|
1713 |
+
"justify_content": null,
|
1714 |
+
"justify_items": null,
|
1715 |
+
"left": null,
|
1716 |
+
"margin": null,
|
1717 |
+
"max_height": null,
|
1718 |
+
"max_width": null,
|
1719 |
+
"min_height": null,
|
1720 |
+
"min_width": null,
|
1721 |
+
"object_fit": null,
|
1722 |
+
"object_position": null,
|
1723 |
+
"order": null,
|
1724 |
+
"overflow": null,
|
1725 |
+
"overflow_x": null,
|
1726 |
+
"overflow_y": null,
|
1727 |
+
"padding": null,
|
1728 |
+
"right": null,
|
1729 |
+
"top": null,
|
1730 |
+
"visibility": null,
|
1731 |
+
"width": null
|
1732 |
+
}
|
1733 |
+
},
|
1734 |
+
"438c3def082e4ee4b22e213a85263e95": {
|
1735 |
+
"model_module": "@jupyter-widgets/controls",
|
1736 |
+
"model_name": "ProgressStyleModel",
|
1737 |
+
"model_module_version": "1.5.0",
|
1738 |
+
"state": {
|
1739 |
+
"_model_module": "@jupyter-widgets/controls",
|
1740 |
+
"_model_module_version": "1.5.0",
|
1741 |
+
"_model_name": "ProgressStyleModel",
|
1742 |
+
"_view_count": null,
|
1743 |
+
"_view_module": "@jupyter-widgets/base",
|
1744 |
+
"_view_module_version": "1.2.0",
|
1745 |
+
"_view_name": "StyleView",
|
1746 |
+
"bar_color": null,
|
1747 |
+
"description_width": ""
|
1748 |
+
}
|
1749 |
+
},
|
1750 |
+
"566ff1a7d087482d8dff86e81c408cf8": {
|
1751 |
+
"model_module": "@jupyter-widgets/base",
|
1752 |
+
"model_name": "LayoutModel",
|
1753 |
+
"model_module_version": "1.2.0",
|
1754 |
+
"state": {
|
1755 |
+
"_model_module": "@jupyter-widgets/base",
|
1756 |
+
"_model_module_version": "1.2.0",
|
1757 |
+
"_model_name": "LayoutModel",
|
1758 |
+
"_view_count": null,
|
1759 |
+
"_view_module": "@jupyter-widgets/base",
|
1760 |
+
"_view_module_version": "1.2.0",
|
1761 |
+
"_view_name": "LayoutView",
|
1762 |
+
"align_content": null,
|
1763 |
+
"align_items": null,
|
1764 |
+
"align_self": null,
|
1765 |
+
"border": null,
|
1766 |
+
"bottom": null,
|
1767 |
+
"display": null,
|
1768 |
+
"flex": null,
|
1769 |
+
"flex_flow": null,
|
1770 |
+
"grid_area": null,
|
1771 |
+
"grid_auto_columns": null,
|
1772 |
+
"grid_auto_flow": null,
|
1773 |
+
"grid_auto_rows": null,
|
1774 |
+
"grid_column": null,
|
1775 |
+
"grid_gap": null,
|
1776 |
+
"grid_row": null,
|
1777 |
+
"grid_template_areas": null,
|
1778 |
+
"grid_template_columns": null,
|
1779 |
+
"grid_template_rows": null,
|
1780 |
+
"height": null,
|
1781 |
+
"justify_content": null,
|
1782 |
+
"justify_items": null,
|
1783 |
+
"left": null,
|
1784 |
+
"margin": null,
|
1785 |
+
"max_height": null,
|
1786 |
+
"max_width": null,
|
1787 |
+
"min_height": null,
|
1788 |
+
"min_width": null,
|
1789 |
+
"object_fit": null,
|
1790 |
+
"object_position": null,
|
1791 |
+
"order": null,
|
1792 |
+
"overflow": null,
|
1793 |
+
"overflow_x": null,
|
1794 |
+
"overflow_y": null,
|
1795 |
+
"padding": null,
|
1796 |
+
"right": null,
|
1797 |
+
"top": null,
|
1798 |
+
"visibility": null,
|
1799 |
+
"width": null
|
1800 |
+
}
|
1801 |
+
},
|
1802 |
+
"7bec7296065e48739e67e498beb93a61": {
|
1803 |
+
"model_module": "@jupyter-widgets/controls",
|
1804 |
+
"model_name": "DescriptionStyleModel",
|
1805 |
+
"model_module_version": "1.5.0",
|
1806 |
+
"state": {
|
1807 |
+
"_model_module": "@jupyter-widgets/controls",
|
1808 |
+
"_model_module_version": "1.5.0",
|
1809 |
+
"_model_name": "DescriptionStyleModel",
|
1810 |
+
"_view_count": null,
|
1811 |
+
"_view_module": "@jupyter-widgets/base",
|
1812 |
+
"_view_module_version": "1.2.0",
|
1813 |
+
"_view_name": "StyleView",
|
1814 |
+
"description_width": ""
|
1815 |
+
}
|
1816 |
+
},
|
1817 |
+
"aea1a283ac1b41e2b62c1f09f6afff45": {
|
1818 |
+
"model_module": "@jupyter-widgets/controls",
|
1819 |
+
"model_name": "HBoxModel",
|
1820 |
+
"model_module_version": "1.5.0",
|
1821 |
+
"state": {
|
1822 |
+
"_dom_classes": [],
|
1823 |
+
"_model_module": "@jupyter-widgets/controls",
|
1824 |
+
"_model_module_version": "1.5.0",
|
1825 |
+
"_model_name": "HBoxModel",
|
1826 |
+
"_view_count": null,
|
1827 |
+
"_view_module": "@jupyter-widgets/controls",
|
1828 |
+
"_view_module_version": "1.5.0",
|
1829 |
+
"_view_name": "HBoxView",
|
1830 |
+
"box_style": "",
|
1831 |
+
"children": [
|
1832 |
+
"IPY_MODEL_b67848e7c426480a82381325e9676fc2",
|
1833 |
+
"IPY_MODEL_1d46459ac8a44bc3bde70d24b9d029bf",
|
1834 |
+
"IPY_MODEL_ba9b581e9a1d4b10ac37fb82aba866d0"
|
1835 |
+
],
|
1836 |
+
"layout": "IPY_MODEL_ee226c57f8e2475ca6810721a522a223"
|
1837 |
+
}
|
1838 |
+
},
|
1839 |
+
"b67848e7c426480a82381325e9676fc2": {
|
1840 |
+
"model_module": "@jupyter-widgets/controls",
|
1841 |
+
"model_name": "HTMLModel",
|
1842 |
+
"model_module_version": "1.5.0",
|
1843 |
+
"state": {
|
1844 |
+
"_dom_classes": [],
|
1845 |
+
"_model_module": "@jupyter-widgets/controls",
|
1846 |
+
"_model_module_version": "1.5.0",
|
1847 |
+
"_model_name": "HTMLModel",
|
1848 |
+
"_view_count": null,
|
1849 |
+
"_view_module": "@jupyter-widgets/controls",
|
1850 |
+
"_view_module_version": "1.5.0",
|
1851 |
+
"_view_name": "HTMLView",
|
1852 |
+
"description": "",
|
1853 |
+
"description_tooltip": null,
|
1854 |
+
"layout": "IPY_MODEL_53496d66f57a4805837340d07216cea4",
|
1855 |
+
"placeholder": "",
|
1856 |
+
"style": "IPY_MODEL_5c77f423a23b44ed9c9187a5991ffd45",
|
1857 |
+
"value": "Downloading (…)lve/main/config.json: 100%"
|
1858 |
+
}
|
1859 |
+
},
|
1860 |
+
"1d46459ac8a44bc3bde70d24b9d029bf": {
|
1861 |
+
"model_module": "@jupyter-widgets/controls",
|
1862 |
+
"model_name": "FloatProgressModel",
|
1863 |
+
"model_module_version": "1.5.0",
|
1864 |
+
"state": {
|
1865 |
+
"_dom_classes": [],
|
1866 |
+
"_model_module": "@jupyter-widgets/controls",
|
1867 |
+
"_model_module_version": "1.5.0",
|
1868 |
+
"_model_name": "FloatProgressModel",
|
1869 |
+
"_view_count": null,
|
1870 |
+
"_view_module": "@jupyter-widgets/controls",
|
1871 |
+
"_view_module_version": "1.5.0",
|
1872 |
+
"_view_name": "ProgressView",
|
1873 |
+
"bar_style": "success",
|
1874 |
+
"description": "",
|
1875 |
+
"description_tooltip": null,
|
1876 |
+
"layout": "IPY_MODEL_e6b65d341d464d00a02ca4f4558f5eca",
|
1877 |
+
"max": 570,
|
1878 |
+
"min": 0,
|
1879 |
+
"orientation": "horizontal",
|
1880 |
+
"style": "IPY_MODEL_dad71950568b48ea86698584d1a3c8aa",
|
1881 |
+
"value": 570
|
1882 |
+
}
|
1883 |
+
},
|
1884 |
+
"ba9b581e9a1d4b10ac37fb82aba866d0": {
|
1885 |
+
"model_module": "@jupyter-widgets/controls",
|
1886 |
+
"model_name": "HTMLModel",
|
1887 |
+
"model_module_version": "1.5.0",
|
1888 |
+
"state": {
|
1889 |
+
"_dom_classes": [],
|
1890 |
+
"_model_module": "@jupyter-widgets/controls",
|
1891 |
+
"_model_module_version": "1.5.0",
|
1892 |
+
"_model_name": "HTMLModel",
|
1893 |
+
"_view_count": null,
|
1894 |
+
"_view_module": "@jupyter-widgets/controls",
|
1895 |
+
"_view_module_version": "1.5.0",
|
1896 |
+
"_view_name": "HTMLView",
|
1897 |
+
"description": "",
|
1898 |
+
"description_tooltip": null,
|
1899 |
+
"layout": "IPY_MODEL_7c7adbd1a76446c0aba2f535e2c1fabd",
|
1900 |
+
"placeholder": "",
|
1901 |
+
"style": "IPY_MODEL_69fae47244e542f886a1e487a3126aef",
|
1902 |
+
"value": " 570/570 [00:00<00:00, 34.0kB/s]"
|
1903 |
+
}
|
1904 |
+
},
|
1905 |
+
"ee226c57f8e2475ca6810721a522a223": {
|
1906 |
+
"model_module": "@jupyter-widgets/base",
|
1907 |
+
"model_name": "LayoutModel",
|
1908 |
+
"model_module_version": "1.2.0",
|
1909 |
+
"state": {
|
1910 |
+
"_model_module": "@jupyter-widgets/base",
|
1911 |
+
"_model_module_version": "1.2.0",
|
1912 |
+
"_model_name": "LayoutModel",
|
1913 |
+
"_view_count": null,
|
1914 |
+
"_view_module": "@jupyter-widgets/base",
|
1915 |
+
"_view_module_version": "1.2.0",
|
1916 |
+
"_view_name": "LayoutView",
|
1917 |
+
"align_content": null,
|
1918 |
+
"align_items": null,
|
1919 |
+
"align_self": null,
|
1920 |
+
"border": null,
|
1921 |
+
"bottom": null,
|
1922 |
+
"display": null,
|
1923 |
+
"flex": null,
|
1924 |
+
"flex_flow": null,
|
1925 |
+
"grid_area": null,
|
1926 |
+
"grid_auto_columns": null,
|
1927 |
+
"grid_auto_flow": null,
|
1928 |
+
"grid_auto_rows": null,
|
1929 |
+
"grid_column": null,
|
1930 |
+
"grid_gap": null,
|
1931 |
+
"grid_row": null,
|
1932 |
+
"grid_template_areas": null,
|
1933 |
+
"grid_template_columns": null,
|
1934 |
+
"grid_template_rows": null,
|
1935 |
+
"height": null,
|
1936 |
+
"justify_content": null,
|
1937 |
+
"justify_items": null,
|
1938 |
+
"left": null,
|
1939 |
+
"margin": null,
|
1940 |
+
"max_height": null,
|
1941 |
+
"max_width": null,
|
1942 |
+
"min_height": null,
|
1943 |
+
"min_width": null,
|
1944 |
+
"object_fit": null,
|
1945 |
+
"object_position": null,
|
1946 |
+
"order": null,
|
1947 |
+
"overflow": null,
|
1948 |
+
"overflow_x": null,
|
1949 |
+
"overflow_y": null,
|
1950 |
+
"padding": null,
|
1951 |
+
"right": null,
|
1952 |
+
"top": null,
|
1953 |
+
"visibility": null,
|
1954 |
+
"width": null
|
1955 |
+
}
|
1956 |
+
},
|
1957 |
+
"53496d66f57a4805837340d07216cea4": {
|
1958 |
+
"model_module": "@jupyter-widgets/base",
|
1959 |
+
"model_name": "LayoutModel",
|
1960 |
+
"model_module_version": "1.2.0",
|
1961 |
+
"state": {
|
1962 |
+
"_model_module": "@jupyter-widgets/base",
|
1963 |
+
"_model_module_version": "1.2.0",
|
1964 |
+
"_model_name": "LayoutModel",
|
1965 |
+
"_view_count": null,
|
1966 |
+
"_view_module": "@jupyter-widgets/base",
|
1967 |
+
"_view_module_version": "1.2.0",
|
1968 |
+
"_view_name": "LayoutView",
|
1969 |
+
"align_content": null,
|
1970 |
+
"align_items": null,
|
1971 |
+
"align_self": null,
|
1972 |
+
"border": null,
|
1973 |
+
"bottom": null,
|
1974 |
+
"display": null,
|
1975 |
+
"flex": null,
|
1976 |
+
"flex_flow": null,
|
1977 |
+
"grid_area": null,
|
1978 |
+
"grid_auto_columns": null,
|
1979 |
+
"grid_auto_flow": null,
|
1980 |
+
"grid_auto_rows": null,
|
1981 |
+
"grid_column": null,
|
1982 |
+
"grid_gap": null,
|
1983 |
+
"grid_row": null,
|
1984 |
+
"grid_template_areas": null,
|
1985 |
+
"grid_template_columns": null,
|
1986 |
+
"grid_template_rows": null,
|
1987 |
+
"height": null,
|
1988 |
+
"justify_content": null,
|
1989 |
+
"justify_items": null,
|
1990 |
+
"left": null,
|
1991 |
+
"margin": null,
|
1992 |
+
"max_height": null,
|
1993 |
+
"max_width": null,
|
1994 |
+
"min_height": null,
|
1995 |
+
"min_width": null,
|
1996 |
+
"object_fit": null,
|
1997 |
+
"object_position": null,
|
1998 |
+
"order": null,
|
1999 |
+
"overflow": null,
|
2000 |
+
"overflow_x": null,
|
2001 |
+
"overflow_y": null,
|
2002 |
+
"padding": null,
|
2003 |
+
"right": null,
|
2004 |
+
"top": null,
|
2005 |
+
"visibility": null,
|
2006 |
+
"width": null
|
2007 |
+
}
|
2008 |
+
},
|
2009 |
+
"5c77f423a23b44ed9c9187a5991ffd45": {
|
2010 |
+
"model_module": "@jupyter-widgets/controls",
|
2011 |
+
"model_name": "DescriptionStyleModel",
|
2012 |
+
"model_module_version": "1.5.0",
|
2013 |
+
"state": {
|
2014 |
+
"_model_module": "@jupyter-widgets/controls",
|
2015 |
+
"_model_module_version": "1.5.0",
|
2016 |
+
"_model_name": "DescriptionStyleModel",
|
2017 |
+
"_view_count": null,
|
2018 |
+
"_view_module": "@jupyter-widgets/base",
|
2019 |
+
"_view_module_version": "1.2.0",
|
2020 |
+
"_view_name": "StyleView",
|
2021 |
+
"description_width": ""
|
2022 |
+
}
|
2023 |
+
},
|
2024 |
+
"e6b65d341d464d00a02ca4f4558f5eca": {
|
2025 |
+
"model_module": "@jupyter-widgets/base",
|
2026 |
+
"model_name": "LayoutModel",
|
2027 |
+
"model_module_version": "1.2.0",
|
2028 |
+
"state": {
|
2029 |
+
"_model_module": "@jupyter-widgets/base",
|
2030 |
+
"_model_module_version": "1.2.0",
|
2031 |
+
"_model_name": "LayoutModel",
|
2032 |
+
"_view_count": null,
|
2033 |
+
"_view_module": "@jupyter-widgets/base",
|
2034 |
+
"_view_module_version": "1.2.0",
|
2035 |
+
"_view_name": "LayoutView",
|
2036 |
+
"align_content": null,
|
2037 |
+
"align_items": null,
|
2038 |
+
"align_self": null,
|
2039 |
+
"border": null,
|
2040 |
+
"bottom": null,
|
2041 |
+
"display": null,
|
2042 |
+
"flex": null,
|
2043 |
+
"flex_flow": null,
|
2044 |
+
"grid_area": null,
|
2045 |
+
"grid_auto_columns": null,
|
2046 |
+
"grid_auto_flow": null,
|
2047 |
+
"grid_auto_rows": null,
|
2048 |
+
"grid_column": null,
|
2049 |
+
"grid_gap": null,
|
2050 |
+
"grid_row": null,
|
2051 |
+
"grid_template_areas": null,
|
2052 |
+
"grid_template_columns": null,
|
2053 |
+
"grid_template_rows": null,
|
2054 |
+
"height": null,
|
2055 |
+
"justify_content": null,
|
2056 |
+
"justify_items": null,
|
2057 |
+
"left": null,
|
2058 |
+
"margin": null,
|
2059 |
+
"max_height": null,
|
2060 |
+
"max_width": null,
|
2061 |
+
"min_height": null,
|
2062 |
+
"min_width": null,
|
2063 |
+
"object_fit": null,
|
2064 |
+
"object_position": null,
|
2065 |
+
"order": null,
|
2066 |
+
"overflow": null,
|
2067 |
+
"overflow_x": null,
|
2068 |
+
"overflow_y": null,
|
2069 |
+
"padding": null,
|
2070 |
+
"right": null,
|
2071 |
+
"top": null,
|
2072 |
+
"visibility": null,
|
2073 |
+
"width": null
|
2074 |
+
}
|
2075 |
+
},
|
2076 |
+
"dad71950568b48ea86698584d1a3c8aa": {
|
2077 |
+
"model_module": "@jupyter-widgets/controls",
|
2078 |
+
"model_name": "ProgressStyleModel",
|
2079 |
+
"model_module_version": "1.5.0",
|
2080 |
+
"state": {
|
2081 |
+
"_model_module": "@jupyter-widgets/controls",
|
2082 |
+
"_model_module_version": "1.5.0",
|
2083 |
+
"_model_name": "ProgressStyleModel",
|
2084 |
+
"_view_count": null,
|
2085 |
+
"_view_module": "@jupyter-widgets/base",
|
2086 |
+
"_view_module_version": "1.2.0",
|
2087 |
+
"_view_name": "StyleView",
|
2088 |
+
"bar_color": null,
|
2089 |
+
"description_width": ""
|
2090 |
+
}
|
2091 |
+
},
|
2092 |
+
"7c7adbd1a76446c0aba2f535e2c1fabd": {
|
2093 |
+
"model_module": "@jupyter-widgets/base",
|
2094 |
+
"model_name": "LayoutModel",
|
2095 |
+
"model_module_version": "1.2.0",
|
2096 |
+
"state": {
|
2097 |
+
"_model_module": "@jupyter-widgets/base",
|
2098 |
+
"_model_module_version": "1.2.0",
|
2099 |
+
"_model_name": "LayoutModel",
|
2100 |
+
"_view_count": null,
|
2101 |
+
"_view_module": "@jupyter-widgets/base",
|
2102 |
+
"_view_module_version": "1.2.0",
|
2103 |
+
"_view_name": "LayoutView",
|
2104 |
+
"align_content": null,
|
2105 |
+
"align_items": null,
|
2106 |
+
"align_self": null,
|
2107 |
+
"border": null,
|
2108 |
+
"bottom": null,
|
2109 |
+
"display": null,
|
2110 |
+
"flex": null,
|
2111 |
+
"flex_flow": null,
|
2112 |
+
"grid_area": null,
|
2113 |
+
"grid_auto_columns": null,
|
2114 |
+
"grid_auto_flow": null,
|
2115 |
+
"grid_auto_rows": null,
|
2116 |
+
"grid_column": null,
|
2117 |
+
"grid_gap": null,
|
2118 |
+
"grid_row": null,
|
2119 |
+
"grid_template_areas": null,
|
2120 |
+
"grid_template_columns": null,
|
2121 |
+
"grid_template_rows": null,
|
2122 |
+
"height": null,
|
2123 |
+
"justify_content": null,
|
2124 |
+
"justify_items": null,
|
2125 |
+
"left": null,
|
2126 |
+
"margin": null,
|
2127 |
+
"max_height": null,
|
2128 |
+
"max_width": null,
|
2129 |
+
"min_height": null,
|
2130 |
+
"min_width": null,
|
2131 |
+
"object_fit": null,
|
2132 |
+
"object_position": null,
|
2133 |
+
"order": null,
|
2134 |
+
"overflow": null,
|
2135 |
+
"overflow_x": null,
|
2136 |
+
"overflow_y": null,
|
2137 |
+
"padding": null,
|
2138 |
+
"right": null,
|
2139 |
+
"top": null,
|
2140 |
+
"visibility": null,
|
2141 |
+
"width": null
|
2142 |
+
}
|
2143 |
+
},
|
2144 |
+
"69fae47244e542f886a1e487a3126aef": {
|
2145 |
+
"model_module": "@jupyter-widgets/controls",
|
2146 |
+
"model_name": "DescriptionStyleModel",
|
2147 |
+
"model_module_version": "1.5.0",
|
2148 |
+
"state": {
|
2149 |
+
"_model_module": "@jupyter-widgets/controls",
|
2150 |
+
"_model_module_version": "1.5.0",
|
2151 |
+
"_model_name": "DescriptionStyleModel",
|
2152 |
+
"_view_count": null,
|
2153 |
+
"_view_module": "@jupyter-widgets/base",
|
2154 |
+
"_view_module_version": "1.2.0",
|
2155 |
+
"_view_name": "StyleView",
|
2156 |
+
"description_width": ""
|
2157 |
+
}
|
2158 |
+
}
|
2159 |
+
}
|
2160 |
+
}
|
2161 |
+
},
|
2162 |
+
"nbformat": 4,
|
2163 |
+
"nbformat_minor": 0
|
2164 |
+
}
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0",
|
14 |
+
"1": "LABEL_1",
|
15 |
+
"2": "LABEL_2",
|
16 |
+
"3": "LABEL_3"
|
17 |
+
},
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 3072,
|
20 |
+
"label2id": {
|
21 |
+
"LABEL_0": 0,
|
22 |
+
"LABEL_1": 1,
|
23 |
+
"LABEL_2": 2,
|
24 |
+
"LABEL_3": 3
|
25 |
+
},
|
26 |
+
"layer_norm_eps": 1e-12,
|
27 |
+
"max_position_embeddings": 512,
|
28 |
+
"model_type": "bert",
|
29 |
+
"num_attention_heads": 12,
|
30 |
+
"num_hidden_layers": 12,
|
31 |
+
"pad_token_id": 0,
|
32 |
+
"position_embedding_type": "absolute",
|
33 |
+
"transformers_version": "4.31.0",
|
34 |
+
"type_vocab_size": 2,
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 30522
|
37 |
+
}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a100153356bb6ad5c780f862bb261ad458750d81e8537ecc9785d513ac5e1b75
|
3 |
+
size 438229280
|