TheBlock commited on
Commit
05aa323
·
verified ·
1 Parent(s): 4230d89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -260
README.md CHANGED
@@ -2,11 +2,11 @@
2
  base_model: mistralai/Mistral-7B-Instruct-v0.2
3
  inference: false
4
  license: apache-2.0
5
- model_creator: Mistral AI_
6
- model_name: Mistral 7B Instruct v0.2
7
- model_type: mistral
8
  pipeline_tag: text-generation
9
- prompt_template: '<s>[INST] {prompt} [/INST]
10
 
11
  '
12
  quantized_by: TheBlock
@@ -36,13 +36,13 @@ tags:
36
  <!-- header end -->
37
 
38
  # Mistral 7B Instruct v0.2 - GGUF
39
- - Model creator: [Mistral AI_](https://huggingface.co/mistralai)
40
- - Original model: [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
41
 
42
  <!-- description start -->
43
  ## Description
44
 
45
- This repo contains GGUF format model files for [Mistral AI_'s Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
46
 
47
  These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
48
 
@@ -69,15 +69,15 @@ Here is an incomplete list of clients and libraries that are known to support GG
69
  <!-- repositories-available start -->
70
  ## Repositories available
71
 
72
- * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF)
73
- * [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
74
  <!-- repositories-available end -->
75
 
76
  <!-- prompt-template start -->
77
- ## Prompt template: Mistral
78
 
79
  ```
80
- <s>[INST] {prompt} [/INST]
81
 
82
  ```
83
 
@@ -91,43 +91,6 @@ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwa
91
 
92
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
93
 
94
- ## Explanation of quantisation methods
95
-
96
- <details>
97
- <summary>Click to see details</summary>
98
-
99
- The new methods available are:
100
-
101
- * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
102
- * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
103
- * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
104
- * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
105
- * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
106
-
107
- Refer to the Provided Files table below to see what files use which methods, and how.
108
- </details>
109
- <!-- compatibility_gguf end -->
110
-
111
- <!-- README_GGUF.md-provided-files start -->
112
- ## Provided files
113
-
114
- | Name | Quant method | Bits | Size | Max RAM required | Use case |
115
- | ---- | ---- | ---- | ---- | ---- | ----- |
116
- | [mistral-7b-instruct-v0.2.Q2_K.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes |
117
- | [mistral-7b-instruct-v0.2.Q3_K_S.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss |
118
- | [mistral-7b-instruct-v0.2.Q3_K_M.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss |
119
- | [mistral-7b-instruct-v0.2.Q3_K_L.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss |
120
- | [mistral-7b-instruct-v0.2.Q4_0.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
121
- | [mistral-7b-instruct-v0.2.Q4_K_S.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss |
122
- | [mistral-7b-instruct-v0.2.Q4_K_M.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended |
123
- | [mistral-7b-instruct-v0.2.Q5_0.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
124
- | [mistral-7b-instruct-v0.2.Q5_K_S.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended |
125
- | [mistral-7b-instruct-v0.2.Q5_K_M.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended |
126
- | [mistral-7b-instruct-v0.2.Q6_K.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss |
127
- | [mistral-7b-instruct-v0.2.Q8_0.gguf](https://huggingface.co/TheBlock/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |
128
-
129
- **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
130
-
131
 
132
 
133
  <!-- README_GGUF.md-provided-files end -->
@@ -145,7 +108,7 @@ The following clients/libraries will automatically download models for you, prov
145
 
146
  ### In `text-generation-webui`
147
 
148
- Under Download Model, you can enter the model repo: TheBlock/Mistral-7B-Instruct-v0.2-GGUF and below it, a specific filename to download, such as: mistral-7b-instruct-v0.2.Q4_K_M.gguf.
149
 
150
  Then click Download.
151
 
@@ -160,140 +123,9 @@ pip3 install huggingface-hub
160
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
161
 
162
  ```shell
163
- huggingface-cli download TheBlock/Mistral-7B-Instruct-v0.2-GGUF mistral-7b-instruct-v0.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
164
- ```
165
-
166
- <details>
167
- <summary>More advanced huggingface-cli download usage (click to read)</summary>
168
-
169
- You can also download multiple files at once with a pattern:
170
-
171
- ```shell
172
- huggingface-cli download TheBlock/Mistral-7B-Instruct-v0.2-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
173
- ```
174
-
175
- For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
176
-
177
- To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
178
-
179
- ```shell
180
- pip3 install hf_transfer
181
- ```
182
-
183
- And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
184
-
185
- ```shell
186
- HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBlock/Mistral-7B-Instruct-v0.2-GGUF mistral-7b-instruct-v0.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
187
- ```
188
-
189
- Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
190
- </details>
191
- <!-- README_GGUF.md-how-to-download end -->
192
-
193
- <!-- README_GGUF.md-how-to-run start -->
194
- ## Example `llama.cpp` command
195
-
196
- Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
197
-
198
- ```shell
199
- ./main -ngl 35 -m mistral-7b-instruct-v0.2.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt} [/INST]"
200
- ```
201
-
202
- Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
203
-
204
- Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
205
-
206
- If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
207
-
208
- For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
209
-
210
- ## How to run in `text-generation-webui`
211
-
212
- Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
213
-
214
- ## How to run from Python code
215
-
216
- You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
217
-
218
- ### How to load this model in Python code, using llama-cpp-python
219
-
220
- For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
221
-
222
- #### First install the package
223
-
224
- Run one of the following commands, according to your system:
225
-
226
- ```shell
227
- # Base ctransformers with no GPU acceleration
228
- pip install llama-cpp-python
229
- # With NVidia CUDA acceleration
230
- CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
231
- # Or with OpenBLAS acceleration
232
- CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
233
- # Or with CLBLast acceleration
234
- CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
235
- # Or with AMD ROCm GPU acceleration (Linux only)
236
- CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
237
- # Or with Metal GPU acceleration for macOS systems only
238
- CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
239
-
240
- # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
241
- $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
242
- pip install llama-cpp-python
243
- ```
244
-
245
- #### Simple llama-cpp-python example code
246
-
247
- ```python
248
- from llama_cpp import Llama
249
-
250
- # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
251
- llm = Llama(
252
- model_path="./mistral-7b-instruct-v0.2.Q4_K_M.gguf", # Download the model file first
253
- n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
254
- n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
255
- n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
256
- )
257
-
258
- # Simple inference example
259
- output = llm(
260
- "<s>[INST] {prompt} [/INST]", # Prompt
261
- max_tokens=512, # Generate up to 512 tokens
262
- stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
263
- echo=True # Whether to echo the prompt
264
- )
265
-
266
- # Chat Completion API
267
-
268
- llm = Llama(model_path="./mistral-7b-instruct-v0.2.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
269
- llm.create_chat_completion(
270
- messages = [
271
- {"role": "system", "content": "You are a story writing assistant."},
272
- {
273
- "role": "user",
274
- "content": "Write a story about llamas."
275
- }
276
- ]
277
- )
278
  ```
279
 
280
- ## How to use with LangChain
281
-
282
- Here are guides on using llama-cpp-python and ctransformers with LangChain:
283
-
284
- * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
285
- * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
286
-
287
- <!-- README_GGUF.md-how-to-run end -->
288
-
289
- <!-- footer start -->
290
- <!-- 200823 -->
291
- ## Discord
292
-
293
- For further support, and discussions on these models and AI in general, join us at:
294
-
295
- [TheBlock AI's Discord server](https://discord.gg/TheBlokeai)
296
-
297
  ## Thanks, and how to contribute
298
 
299
  Thanks to the [chirper.ai](https://chirper.ai) team!
@@ -321,85 +153,8 @@ And thank you again to a16z for their generous grant.
321
  <!-- footer end -->
322
 
323
  <!-- original-model-card start -->
324
- # Original model card: Mistral AI_'s Mistral 7B Instruct v0.2
325
-
326
-
327
- # Model Card for Mistral-7B-Instruct-v0.2
328
-
329
- The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an improved instruct fine-tuned version of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1).
330
-
331
- For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/la-plateforme/).
332
-
333
- ## Instruction format
334
-
335
- In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
336
-
337
- E.g.
338
- ```
339
- text = "<s>[INST] What is your favourite condiment? [/INST]"
340
- "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
341
- "[INST] Do you have mayonnaise recipes? [/INST]"
342
- ```
343
-
344
- This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
345
-
346
- ```python
347
- from transformers import AutoModelForCausalLM, AutoTokenizer
348
-
349
- device = "cuda" # the device to load the model onto
350
-
351
- model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
352
- tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
353
-
354
- messages = [
355
- {"role": "user", "content": "What is your favourite condiment?"},
356
- {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
357
- {"role": "user", "content": "Do you have mayonnaise recipes?"}
358
- ]
359
-
360
- encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
361
-
362
- model_inputs = encodeds.to(device)
363
- model.to(device)
364
-
365
- generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
366
- decoded = tokenizer.batch_decode(generated_ids)
367
- print(decoded[0])
368
- ```
369
-
370
- ## Model Architecture
371
- This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
372
- - Grouped-Query Attention
373
- - Sliding-Window Attention
374
- - Byte-fallback BPE tokenizer
375
-
376
- ## Troubleshooting
377
- - If you see the following error:
378
- ```
379
- Traceback (most recent call last):
380
- File "", line 1, in
381
- File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
382
- config, kwargs = AutoConfig.from_pretrained(
383
- File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
384
- config_class = CONFIG_MAPPING[config_dict["model_type"]]
385
- File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
386
- raise KeyError(key)
387
- KeyError: 'mistral'
388
- ```
389
-
390
- Installing transformers from source should solve the issue
391
- pip install git+https://github.com/huggingface/transformers
392
-
393
- This should not be required after transformers-v4.33.4.
394
-
395
- ## Limitations
396
-
397
- The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
398
- It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
399
- make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
400
-
401
- ## The Mistral AI Team
402
 
403
- Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
404
 
 
405
  <!-- original-model-card end -->
 
2
  base_model: mistralai/Mistral-7B-Instruct-v0.2
3
  inference: false
4
  license: apache-2.0
5
+ model_creator: L-R/_
6
+ model_name: LLmRA-3B-v0.1
7
+ model_type: llama2
8
  pipeline_tag: text-generation
9
+ prompt_template: '<|system|>, <|user|>, <|model|>.
10
 
11
  '
12
  quantized_by: TheBlock
 
36
  <!-- header end -->
37
 
38
  # Mistral 7B Instruct v0.2 - GGUF
39
+ - Model creator: [LinguaRole Labs](https://huggingface.co/L-R/)
40
+ - Original model: [LLmRA-3B-v0.1](https://huggingface.co/L-R/LLmRA-3B-v0.1)
41
 
42
  <!-- description start -->
43
  ## Description
44
 
45
+ This repo contains GGUF format model files for [LinguaRole Labs](https://huggingface.co/L-R/LLmRA-3B-v0.1).
46
 
47
  These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
48
 
 
69
  <!-- repositories-available start -->
70
  ## Repositories available
71
 
72
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](TheBlock/LLmRA-3B-v0.1-GGUF)
73
+ * [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/L-R/LLmRA-3B-v0.1)
74
  <!-- repositories-available end -->
75
 
76
  <!-- prompt-template start -->
77
+ ## Prompt template: Custom
78
 
79
  ```
80
+ <|system|>, <|user|>, <|model|>.
81
 
82
  ```
83
 
 
91
 
92
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
 
96
  <!-- README_GGUF.md-provided-files end -->
 
108
 
109
  ### In `text-generation-webui`
110
 
111
+ Under Download Model, you can enter the model repo: TheBlock/LLmRA-3B-v0.1-GGUF and below it, a specific filename to download, such as: mistral-7b-instruct-v0.2.Q4_K_M.gguf.
112
 
113
  Then click Download.
114
 
 
123
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
124
 
125
  ```shell
126
+ huggingface-cli download TheBlock/LLmRA-3B-v0.1-GGUF LLmRA-3B-v0.1-q8_0.gguf --local-dir . --local-dir-use-symlinks False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  ```
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  ## Thanks, and how to contribute
130
 
131
  Thanks to the [chirper.ai](https://chirper.ai) team!
 
153
  <!-- footer end -->
154
 
155
  <!-- original-model-card start -->
156
+ # Original model card: L-R/LLmRA-3B-v0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
 
158
 
159
+ https://huggingface.co/L-R/LLmRA-3B-v0.1
160
  <!-- original-model-card end -->