TheBloke commited on
Commit
258acab
·
1 Parent(s): 34e770b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -58,7 +58,7 @@ This repo contains GGUF format model files for [CalderAI's 30B Lazarus](https://
58
  <!-- README_GGUF.md-about-gguf start -->
59
  ### About GGUF
60
 
61
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
62
 
63
  Here is an incomplate list of clients and libraries that are known to support GGUF:
64
 
@@ -101,7 +101,7 @@ Below is an instruction that describes a task. Write a response that appropriate
101
  <!-- compatibility_gguf start -->
102
  ## Compatibility
103
 
104
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
105
 
106
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
107
 
@@ -165,7 +165,7 @@ Then click Download.
165
  I recommend using the `huggingface-hub` Python library:
166
 
167
  ```shell
168
- pip3 install huggingface-hub>=0.17.1
169
  ```
170
 
171
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -194,25 +194,25 @@ pip3 install hf_transfer
194
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
195
 
196
  ```shell
197
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/30B-Lazarus-GGUF 30b-Lazarus.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
198
  ```
199
 
200
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
201
  </details>
202
  <!-- README_GGUF.md-how-to-download end -->
203
 
204
  <!-- README_GGUF.md-how-to-run start -->
205
  ## Example `llama.cpp` command
206
 
207
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
208
 
209
  ```shell
210
- ./main -ngl 32 -m 30b-Lazarus.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
211
  ```
212
 
213
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
214
 
215
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
216
 
217
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
218
 
@@ -226,22 +226,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
226
 
227
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
228
 
229
- ### How to load this model from Python using ctransformers
230
 
231
  #### First install the package
232
 
233
- ```bash
 
 
234
  # Base ctransformers with no GPU acceleration
235
- pip install ctransformers>=0.2.24
236
  # Or with CUDA GPU acceleration
237
- pip install ctransformers[cuda]>=0.2.24
238
- # Or with ROCm GPU acceleration
239
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
240
- # Or with Metal GPU acceleration for macOS systems
241
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
242
  ```
243
 
244
- #### Simple example code to load one of these GGUF models
245
 
246
  ```python
247
  from ctransformers import AutoModelForCausalLM
@@ -254,7 +256,7 @@ print(llm("AI is going to"))
254
 
255
  ## How to use with LangChain
256
 
257
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
258
 
259
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
260
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
58
  <!-- README_GGUF.md-about-gguf start -->
59
  ### About GGUF
60
 
61
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
62
 
63
  Here is an incomplate list of clients and libraries that are known to support GGUF:
64
 
 
101
  <!-- compatibility_gguf start -->
102
  ## Compatibility
103
 
104
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
105
 
106
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
107
 
 
165
  I recommend using the `huggingface-hub` Python library:
166
 
167
  ```shell
168
+ pip3 install huggingface-hub
169
  ```
170
 
171
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
194
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
195
 
196
  ```shell
197
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/30B-Lazarus-GGUF 30b-Lazarus.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
198
  ```
199
 
200
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
201
  </details>
202
  <!-- README_GGUF.md-how-to-download end -->
203
 
204
  <!-- README_GGUF.md-how-to-run start -->
205
  ## Example `llama.cpp` command
206
 
207
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
208
 
209
  ```shell
210
+ ./main -ngl 32 -m 30b-Lazarus.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
211
  ```
212
 
213
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
214
 
215
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
216
 
217
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
218
 
 
226
 
227
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
228
 
229
+ ### How to load this model in Python code, using ctransformers
230
 
231
  #### First install the package
232
 
233
+ Run one of the following commands, according to your system:
234
+
235
+ ```shell
236
  # Base ctransformers with no GPU acceleration
237
+ pip install ctransformers
238
  # Or with CUDA GPU acceleration
239
+ pip install ctransformers[cuda]
240
+ # Or with AMD ROCm GPU acceleration (Linux only)
241
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
242
+ # Or with Metal GPU acceleration for macOS systems only
243
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
244
  ```
245
 
246
+ #### Simple ctransformers example code
247
 
248
  ```python
249
  from ctransformers import AutoModelForCausalLM
 
256
 
257
  ## How to use with LangChain
258
 
259
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
260
 
261
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
262
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)