Initial GPTQ model commit
Browse files
llama_rope_scaled_monkey_patch.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
import transformers.models.llama.modeling_llama
|
4 |
+
from einops import rearrange
|
5 |
+
import random
|
6 |
+
|
7 |
+
# This monkey patch file is not needed if using ExLlama, or if using `trust_remote_code=True``
|
8 |
+
|
9 |
+
class ScaledRotaryEmbedding(torch.nn.Module):
|
10 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
11 |
+
super().__init__()
|
12 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
13 |
+
self.register_buffer("inv_freq", inv_freq)
|
14 |
+
|
15 |
+
max_position_embeddings = 4096
|
16 |
+
|
17 |
+
# Build here to make `torch.jit.trace` work.
|
18 |
+
self.max_seq_len_cached = max_position_embeddings
|
19 |
+
t = torch.arange(
|
20 |
+
self.max_seq_len_cached,
|
21 |
+
device=self.inv_freq.device,
|
22 |
+
dtype=self.inv_freq.dtype,
|
23 |
+
)
|
24 |
+
|
25 |
+
self.scale = 1 / 2
|
26 |
+
t *= self.scale
|
27 |
+
|
28 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
29 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
30 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
31 |
+
self.register_buffer(
|
32 |
+
"cos_cached", emb.cos()[None, None, :, :], persistent=False
|
33 |
+
)
|
34 |
+
self.register_buffer(
|
35 |
+
"sin_cached", emb.sin()[None, None, :, :], persistent=False
|
36 |
+
)
|
37 |
+
|
38 |
+
def forward(self, x, seq_len=None):
|
39 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
40 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
41 |
+
if seq_len > self.max_seq_len_cached:
|
42 |
+
self.max_seq_len_cached = seq_len
|
43 |
+
t = torch.arange(
|
44 |
+
self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype
|
45 |
+
)
|
46 |
+
t *= self.scale
|
47 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
48 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
49 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
50 |
+
self.register_buffer(
|
51 |
+
"cos_cached", emb.cos()[None, None, :, :], persistent=False
|
52 |
+
)
|
53 |
+
self.register_buffer(
|
54 |
+
"sin_cached", emb.sin()[None, None, :, :], persistent=False
|
55 |
+
)
|
56 |
+
return (
|
57 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
58 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def replace_llama_rope_with_scaled_rope():
|
63 |
+
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = (
|
64 |
+
ScaledRotaryEmbedding
|
65 |
+
)
|