File size: 18,531 Bytes
4543c6c 0363fb2 4543c6c 0363fb2 4543c6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
---
language:
- en
license: other
tags:
- medical
datasets:
- starmpcc/Asclepius-Synthetic-Clinical-Notes
model_name: Asclepius 13B
inference: false
model_creator: Junu Kim
model_link: https://huggingface.co/starmpcc/Asclepius-13B
model_type: llama
pipeline_tag: text2text-generation
quantized_by: TheBloke
base_model: starmpcc/Asclepius-13B
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# Asclepius 13B - GGML
- Model creator: [Junu Kim](https://huggingface.co/starmpcc)
- Original model: [Asclepius 13B](https://huggingface.co/starmpcc/Asclepius-13B)
## Description
This repo contains GGML format model files for [Junu Kim's Asclepius 13B](https://huggingface.co/starmpcc/Asclepius-13B).
### Important note regarding GGML files.
The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
Please use the GGUF models instead.
### About GGML
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with CUDA GPU acceleration via the c_transformers backend.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
## Repositories available
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Asclepius-13B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Asclepius-13B-GGUF)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Asclepius-13B-GGML)
* [Junu Kim's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/starmpcc/Asclepius-13B)
## Prompt template: Asclepius
```
You are an intelligent clinical languge model.
Below is a snippet of patient's discharge summary and a following instruction from healthcare professional.
Write a response that appropriately completes the instruction.
The response should provide the accurate answer to the instruction, while being concise.
[Discharge Summary Begin]
Notes go here
[Discharge Summary End]
[Instruction Begin]
{prompt}
[Instruction End]
```
<!-- compatibility_ggml start -->
## Compatibility
These quantised GGML files are compatible with llama.cpp between June 6th (commit `2d43387`) and August 21st 2023.
For support with latest llama.cpp, please use GGUF files instead.
The final llama.cpp commit with support for GGML was: [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
As of August 23rd 2023 they are still compatible with all UIs, libraries and utilities which use GGML. This may change in the future.
## Explanation of the new k-quant methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [asclepius-13b.ggmlv3.Q2_K.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q2_K.bin) | Q2_K | 2 | 5.51 GB| 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| [asclepius-13b.ggmlv3.Q3_K_S.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q3_K_S.bin) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| [asclepius-13b.ggmlv3.Q3_K_M.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q3_K_M.bin) | Q3_K_M | 3 | 6.31 GB| 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| [asclepius-13b.ggmlv3.Q3_K_L.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q3_K_L.bin) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| [asclepius-13b.ggmlv3.Q4_0.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q4_0.bin) | Q4_0 | 4 | 7.37 GB| 9.87 GB | Original quant method, 4-bit. |
| [asclepius-13b.ggmlv3.Q4_K_S.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q4_K_S.bin) | Q4_K_S | 4 | 7.37 GB| 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| [asclepius-13b.ggmlv3.Q4_K_M.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q4_K_M.bin) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| [asclepius-13b.ggmlv3.Q4_1.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q4_1.bin) | Q4_1 | 4 | 8.17 GB| 10.67 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| [asclepius-13b.ggmlv3.Q5_0.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q5_0.bin) | Q5_0 | 5 | 8.97 GB| 11.47 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| [asclepius-13b.ggmlv3.Q5_K_S.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q5_K_S.bin) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| [asclepius-13b.ggmlv3.Q5_K_M.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q5_K_M.bin) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| [asclepius-13b.ggmlv3.Q5_1.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q5_1.bin) | Q5_1 | 5 | 9.78 GB| 12.28 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| [asclepius-13b.ggmlv3.Q6_K.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q6_K.bin) | Q6_K | 6 | 10.68 GB| 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
| [asclepius-13b.ggmlv3.Q8_0.bin](https://huggingface.co/TheBloke/Asclepius-13B-GGML/blob/main/asclepius-13b.ggmlv3.Q8_0.bin) | Q8_0 | 8 | 13.79 GB| 16.29 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
For compatibility with latest llama.cpp, please use GGUF files instead.
```
./main -t 10 -ngl 32 -m asclepius-13b.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "You are an intelligent clinical languge model.\nBelow is a snippet of patient's discharge summary and a following instruction from healthcare professional.\nWrite a response that appropriately completes the instruction.\nThe response should provide the accurate answer to the instruction, while being concise.\n\n[Discharge Summary Begin]\nNotes go here\n[Discharge Summary End]\n\n[Instruction Begin]\nWrite a story about llamas\n[Instruction End]"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 2048` to the desired sequence length for this model. For example, `-c 4096` for a Llama 2 model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
<!-- footer start -->
<!-- 200823 -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
<!-- footer end -->
# Original model card: Junu Kim's Asclepius 13B
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This is official model checkpoint for Asclepius-13B [arxiv](todo)
This model is the first publicly shareable clinical LLM, trained with synthetic data.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Model type:** Clinical LLM (Large Language Model)
- **Language(s) (NLP):** English
- **License:** CC-BY-NC-SA 4.0
- **Finetuned from model [optional]:** LLaMA-13B
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/starmpcc/Asclepius
- **Paper [optional]:** TODO Arxiv
- **Data:** https://huggingface.co/datasets/starmpcc/Asclepius-Synthetic-Clinical-Notes
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
This model can perform below 8 clinical NLP tasks, with clincal notes.
- Named Entity Recognition
- Abbreviation Expansion
- Relation Extraction
- Temporal Information Extraction
- Coreference Resolution
- Paraphrasing
- Summarization
- Question Answering
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
ONLY USE THIS MODEL FOR RESEARCH PURPOSE!!
## How to Get Started with the Model
```python
prompt = """You are an intelligent clinical languge model.
Below is a snippet of patient's discharge summary and a following instruction from healthcare professional.
Write a response that appropriately completes the instruction.
The response should provide the accurate answer to the instruction, while being concise.
[Discharge Summary Begin]
{note}
[Discharge Summary End]
[Instruction Begin]
{question}
[Instruction End]
"""
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("starmpcc/Asclepius-13B")
model = AutoModel.from_pretrained("starmpcc/Asclepius-13B")
note = "This is a sample note"
question = "What is the diagnosis?"
model_input = prompt.format(note=note, question=question)
input_ids = tokenizer(model_input, return_tensors="pt").input_ids
output = model.generate(input_ids)
print(tokenizer.decode(output[0]))
```
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
https://huggingface.co/datasets/starmpcc/Asclepius-Synthetic-Clinical-Notes
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
- Initial training was conducted using causal language modeling on synthetic clinical notes.
- It was then fine-tuned with clinical instruction-response pairs.
- For a comprehensive overview of our methods, our upcoming paper will serve as a resource.
#### Training Hyperparameters
- We followed config used in [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
-
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
- Pre-Training (1 epoch): 1h 52m with 8x A100 80G
- Instruction Fine-Tuning (3 epoch): 12h 16m with 8x A100 80G
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
|