TheBloke commited on
Commit
8d92a87
1 Parent(s): 348e688

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -50,7 +50,7 @@ This repo contains GGUF format model files for [Camel AI's CAMEL 13B Role Playin
50
  <!-- README_GGUF.md-about-gguf start -->
51
  ### About GGUF
52
 
53
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
54
 
55
  Here is an incomplate list of clients and libraries that are known to support GGUF:
56
 
@@ -93,7 +93,7 @@ Below is an instruction that describes a task. Write a response that appropriate
93
  <!-- compatibility_gguf start -->
94
  ## Compatibility
95
 
96
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
97
 
98
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
99
 
@@ -157,7 +157,7 @@ Then click Download.
157
  I recommend using the `huggingface-hub` Python library:
158
 
159
  ```shell
160
- pip3 install huggingface-hub>=0.17.1
161
  ```
162
 
163
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -186,25 +186,25 @@ pip3 install hf_transfer
186
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
187
 
188
  ```shell
189
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/CAMEL-13B-Role-Playing-Data-GGUF camel-13b-roleplay.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
190
  ```
191
 
192
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
193
  </details>
194
  <!-- README_GGUF.md-how-to-download end -->
195
 
196
  <!-- README_GGUF.md-how-to-run start -->
197
  ## Example `llama.cpp` command
198
 
199
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
200
 
201
  ```shell
202
- ./main -ngl 32 -m camel-13b-roleplay.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
203
  ```
204
 
205
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
206
 
207
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
208
 
209
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
210
 
@@ -218,22 +218,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
218
 
219
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
220
 
221
- ### How to load this model from Python using ctransformers
222
 
223
  #### First install the package
224
 
225
- ```bash
 
 
226
  # Base ctransformers with no GPU acceleration
227
- pip install ctransformers>=0.2.24
228
  # Or with CUDA GPU acceleration
229
- pip install ctransformers[cuda]>=0.2.24
230
- # Or with ROCm GPU acceleration
231
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
232
- # Or with Metal GPU acceleration for macOS systems
233
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
234
  ```
235
 
236
- #### Simple example code to load one of these GGUF models
237
 
238
  ```python
239
  from ctransformers import AutoModelForCausalLM
@@ -246,7 +248,7 @@ print(llm("AI is going to"))
246
 
247
  ## How to use with LangChain
248
 
249
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
250
 
251
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
252
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
50
  <!-- README_GGUF.md-about-gguf start -->
51
  ### About GGUF
52
 
53
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
54
 
55
  Here is an incomplate list of clients and libraries that are known to support GGUF:
56
 
 
93
  <!-- compatibility_gguf start -->
94
  ## Compatibility
95
 
96
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
97
 
98
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
99
 
 
157
  I recommend using the `huggingface-hub` Python library:
158
 
159
  ```shell
160
+ pip3 install huggingface-hub
161
  ```
162
 
163
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
186
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
187
 
188
  ```shell
189
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/CAMEL-13B-Role-Playing-Data-GGUF camel-13b-roleplay.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
190
  ```
191
 
192
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
193
  </details>
194
  <!-- README_GGUF.md-how-to-download end -->
195
 
196
  <!-- README_GGUF.md-how-to-run start -->
197
  ## Example `llama.cpp` command
198
 
199
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
200
 
201
  ```shell
202
+ ./main -ngl 32 -m camel-13b-roleplay.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
203
  ```
204
 
205
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
206
 
207
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
208
 
209
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
210
 
 
218
 
219
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
220
 
221
+ ### How to load this model in Python code, using ctransformers
222
 
223
  #### First install the package
224
 
225
+ Run one of the following commands, according to your system:
226
+
227
+ ```shell
228
  # Base ctransformers with no GPU acceleration
229
+ pip install ctransformers
230
  # Or with CUDA GPU acceleration
231
+ pip install ctransformers[cuda]
232
+ # Or with AMD ROCm GPU acceleration (Linux only)
233
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
234
+ # Or with Metal GPU acceleration for macOS systems only
235
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
236
  ```
237
 
238
+ #### Simple ctransformers example code
239
 
240
  ```python
241
  from ctransformers import AutoModelForCausalLM
 
248
 
249
  ## How to use with LangChain
250
 
251
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
252
 
253
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
254
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)