Initial GGML model commit
Browse files
README.md
CHANGED
@@ -8,7 +8,7 @@ language:
|
|
8 |
license: llama2
|
9 |
model_creator: OpenAssistant
|
10 |
model_link: https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10
|
11 |
-
model_name: CodeLlama 13B
|
12 |
model_type: llama
|
13 |
quantized_by: TheBloke
|
14 |
---
|
@@ -30,18 +30,19 @@ quantized_by: TheBloke
|
|
30 |
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
31 |
<!-- header end -->
|
32 |
|
33 |
-
# CodeLlama 13B
|
34 |
- Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
|
35 |
-
- Original model: [CodeLlama 13B
|
36 |
|
37 |
## Description
|
38 |
|
39 |
-
This repo contains GGML format model files for [OpenAssistant's CodeLlama 13B
|
40 |
|
41 |
### Important note regarding GGML files.
|
42 |
|
43 |
The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
|
44 |
|
|
|
45 |
### About GGML
|
46 |
|
47 |
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
|
@@ -54,9 +55,9 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
|
|
54 |
|
55 |
## Repositories available
|
56 |
|
57 |
-
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-
|
58 |
-
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-
|
59 |
-
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-
|
60 |
* [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
|
61 |
|
62 |
## Prompt template: ChatML
|
@@ -101,20 +102,20 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
101 |
|
102 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
103 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
104 |
-
|
|
105 |
-
|
|
106 |
-
|
|
107 |
-
|
|
108 |
-
|
|
109 |
-
|
|
110 |
-
|
|
111 |
-
|
|
112 |
-
|
|
113 |
-
|
|
114 |
-
|
|
115 |
-
|
|
116 |
-
|
|
117 |
-
|
|
118 |
|
119 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
120 |
|
@@ -125,7 +126,7 @@ Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6
|
|
125 |
For compatibility with latest llama.cpp, please use GGUF files instead.
|
126 |
|
127 |
```
|
128 |
-
./main -t 10 -ngl 32 -m codellama-13b-oasst-sft-v10.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "
|
129 |
```
|
130 |
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
131 |
|
@@ -173,7 +174,7 @@ And thank you again to a16z for their generous grant.
|
|
173 |
|
174 |
<!-- footer end -->
|
175 |
|
176 |
-
# Original model card: OpenAssistant's CodeLlama 13B
|
177 |
|
178 |
# Open-Assistant CodeLlama 13B SFT v10
|
179 |
|
|
|
8 |
license: llama2
|
9 |
model_creator: OpenAssistant
|
10 |
model_link: https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10
|
11 |
+
model_name: CodeLlama 13B SFT v10
|
12 |
model_type: llama
|
13 |
quantized_by: TheBloke
|
14 |
---
|
|
|
30 |
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
31 |
<!-- header end -->
|
32 |
|
33 |
+
# CodeLlama 13B SFT v10 - GGML
|
34 |
- Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
|
35 |
+
- Original model: [CodeLlama 13B SFT v10](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
|
36 |
|
37 |
## Description
|
38 |
|
39 |
+
This repo contains GGML format model files for [OpenAssistant's CodeLlama 13B SFT v10](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10).
|
40 |
|
41 |
### Important note regarding GGML files.
|
42 |
|
43 |
The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
|
44 |
|
45 |
+
Please use the GGUF models instead.
|
46 |
### About GGML
|
47 |
|
48 |
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
|
|
|
55 |
|
56 |
## Repositories available
|
57 |
|
58 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GPTQ)
|
59 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GGUF)
|
60 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GGML)
|
61 |
* [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
|
62 |
|
63 |
## Prompt template: ChatML
|
|
|
102 |
|
103 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
104 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
105 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q2_K.bin | Q2_K | 2 | 5.74 GB| 8.24 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
106 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q3_K_S.bin | Q3_K_S | 3 | 5.87 GB| 8.37 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
107 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q3_K_M.bin | Q3_K_M | 3 | 6.53 GB| 9.03 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
108 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q3_K_L.bin | Q3_K_L | 3 | 7.14 GB| 9.64 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
109 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q4_0.bin | Q4_0 | 4 | 7.32 GB| 9.82 GB | Original quant method, 4-bit. |
|
110 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q4_K_S.bin | Q4_K_S | 4 | 7.56 GB| 10.06 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
|
111 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q4_K_M.bin | Q4_K_M | 4 | 8.06 GB| 10.56 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
112 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q4_1.bin | Q4_1 | 4 | 8.14 GB| 10.64 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
113 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q5_0.bin | Q5_0 | 5 | 8.95 GB| 11.45 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
114 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q5_K_S.bin | Q5_K_S | 5 | 9.15 GB| 11.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
|
115 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q5_K_M.bin | Q5_K_M | 5 | 9.40 GB| 11.90 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
116 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q5_1.bin | Q5_1 | 5 | 9.76 GB| 12.26 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
|
117 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q6_K.bin | Q6_K | 6 | 10.83 GB| 13.33 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
|
118 |
+
| codellama-13b-oasst-sft-v10.ggmlv3.Q8_0.bin | Q8_0 | 8 | 13.83 GB| 16.33 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
|
119 |
|
120 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
121 |
|
|
|
126 |
For compatibility with latest llama.cpp, please use GGUF files instead.
|
127 |
|
128 |
```
|
129 |
+
./main -t 10 -ngl 32 -m codellama-13b-oasst-sft-v10.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\nYou are a story writing assistant.<|im_end|>\n<|im_start|>user\nWrite a story about llamas<|im_end|>\n<|im_start|>assistant"
|
130 |
```
|
131 |
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
132 |
|
|
|
174 |
|
175 |
<!-- footer end -->
|
176 |
|
177 |
+
# Original model card: OpenAssistant's CodeLlama 13B SFT v10
|
178 |
|
179 |
# Open-Assistant CodeLlama 13B SFT v10
|
180 |
|