TheBloke commited on
Commit
7a75ce1
1 Parent(s): c96e8ed

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +524 -3
README.md CHANGED
@@ -1,5 +1,526 @@
1
- This model is still processing.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- Once the model has finished processing and has uploaded, this temporary README will be replaced.
4
 
5
- ETA: not before 06:00 GMT/UTC, and could be longer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ Tags:
3
+ - mixtral
4
+ - moe
5
+ - discoresearch
6
+ base_model: DiscoResearch/DiscoLM-mixtral-8x7b-v2
7
+ datasets:
8
+ - migtissera/Synthia-v1.3
9
+ - meta-math/MetaMathQA
10
+ - NousResearch/capybara
11
+ inference: false
12
+ language:
13
+ - en
14
+ library_name: transformers
15
+ license: apache-2.0
16
+ model_creator: Disco Research
17
+ model_name: Discolm Mixtral 8X7B v2
18
+ model_type: mistral
19
+ pipeline_tag: text-generation
20
+ prompt_template: '<|im_start|>system
21
 
22
+ {system_message}<|im_end|>
23
 
24
+ <|im_start|>user
25
+
26
+ {prompt}<|im_end|>
27
+
28
+ <|im_start|>assistant
29
+
30
+ '
31
+ quantized_by: TheBloke
32
+ ---
33
+ <!-- markdownlint-disable MD041 -->
34
+
35
+ <!-- header start -->
36
+ <!-- 200823 -->
37
+ <div style="width: auto; margin-left: auto; margin-right: auto">
38
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
39
+ </div>
40
+ <div style="display: flex; justify-content: space-between; width: 100%;">
41
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
42
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
43
+ </div>
44
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
45
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
46
+ </div>
47
+ </div>
48
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
49
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
50
+ <!-- header end -->
51
+
52
+ # Discolm Mixtral 8X7B v2 - GPTQ
53
+ - Model creator: [Disco Research](https://huggingface.co/DiscoResearch)
54
+ - Original model: [Discolm Mixtral 8X7B v2](https://huggingface.co/DiscoResearch/DiscoLM-mixtral-8x7b-v2)
55
+
56
+ <!-- description start -->
57
+ # Description
58
+
59
+ This repo contains GPTQ model files for [Disco Research's Discolm Mixtral 8X7B v2](https://huggingface.co/DiscoResearch/DiscoLM-mixtral-8x7b-v2).
60
+
61
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
62
+
63
+ <!-- description end -->
64
+ <!-- repositories-available start -->
65
+ ## Repositories available
66
+
67
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ)
68
+ * [Disco Research's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/DiscoResearch/DiscoLM-mixtral-8x7b-v2)
69
+ <!-- repositories-available end -->
70
+
71
+ <!-- prompt-template start -->
72
+ ## Prompt template: ChatML
73
+
74
+ ```
75
+ <|im_start|>system
76
+ {system_message}<|im_end|>
77
+ <|im_start|>user
78
+ {prompt}<|im_end|>
79
+ <|im_start|>assistant
80
+
81
+ ```
82
+
83
+ <!-- prompt-template end -->
84
+
85
+
86
+
87
+ <!-- README_GPTQ.md-compatible clients start -->
88
+ ## Known compatible clients / servers
89
+
90
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
91
+
92
+ These GPTQ models are known to work in the following inference servers/webuis.
93
+
94
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
95
+ - [KoboldAI United](https://github.com/henk717/koboldai)
96
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
97
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
98
+
99
+ This may not be a complete list; if you know of others, please let me know!
100
+ <!-- README_GPTQ.md-compatible clients end -->
101
+
102
+ <!-- README_GPTQ.md-provided-files start -->
103
+ ## Provided files, and GPTQ parameters
104
+
105
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
106
+
107
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
108
+
109
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
110
+
111
+ <details>
112
+ <summary>Explanation of GPTQ parameters</summary>
113
+
114
+ - Bits: The bit size of the quantised model.
115
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
116
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
117
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
118
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
119
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
120
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
121
+
122
+ </details>
123
+
124
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
125
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
126
+ | [main](https://huggingface.co/TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.97 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
127
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 5.00 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
128
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 5.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
129
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.98 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
130
+ | [gptq-3bit-128g-actorder_true](https://huggingface.co/TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ/tree/gptq-3bit-128g-actorder_true) | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 5.00 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
131
+ | [gptq-3bit-32g-actorder_true](https://huggingface.co/TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ/tree/gptq-3bit-32g-actorder_true) | 3 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.99 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. |
132
+ | [gptq-8bit--1g-actorder_true](https://huggingface.co/TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ/tree/gptq-8bit--1g-actorder_true) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.96 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
133
+ | [gptq-3bit-128g-actorder_true](https://huggingface.co/TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ/tree/gptq-3bit-128g-actorder_true) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 5.00 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
134
+
135
+ <!-- README_GPTQ.md-provided-files end -->
136
+
137
+ <!-- README_GPTQ.md-download-from-branches start -->
138
+ ## How to download, including from branches
139
+
140
+ ### In text-generation-webui
141
+
142
+ To download from the `main` branch, enter `TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ` in the "Download model" box.
143
+
144
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ:gptq-4bit-128g-actorder_True`
145
+
146
+ ### From the command line
147
+
148
+ I recommend using the `huggingface-hub` Python library:
149
+
150
+ ```shell
151
+ pip3 install huggingface-hub
152
+ ```
153
+
154
+ To download the `main` branch to a folder called `DiscoLM-mixtral-8x7b-v2-GPTQ`:
155
+
156
+ ```shell
157
+ mkdir DiscoLM-mixtral-8x7b-v2-GPTQ
158
+ huggingface-cli download TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ --local-dir DiscoLM-mixtral-8x7b-v2-GPTQ --local-dir-use-symlinks False
159
+ ```
160
+
161
+ To download from a different branch, add the `--revision` parameter:
162
+
163
+ ```shell
164
+ mkdir DiscoLM-mixtral-8x7b-v2-GPTQ
165
+ huggingface-cli download TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir DiscoLM-mixtral-8x7b-v2-GPTQ --local-dir-use-symlinks False
166
+ ```
167
+
168
+ <details>
169
+ <summary>More advanced huggingface-cli download usage</summary>
170
+
171
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
172
+
173
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
174
+
175
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
176
+
177
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
178
+
179
+ ```shell
180
+ pip3 install hf_transfer
181
+ ```
182
+
183
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
184
+
185
+ ```shell
186
+ mkdir DiscoLM-mixtral-8x7b-v2-GPTQ
187
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ --local-dir DiscoLM-mixtral-8x7b-v2-GPTQ --local-dir-use-symlinks False
188
+ ```
189
+
190
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
191
+ </details>
192
+
193
+ ### With `git` (**not** recommended)
194
+
195
+ To clone a specific branch with `git`, use a command like this:
196
+
197
+ ```shell
198
+ git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ
199
+ ```
200
+
201
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
202
+
203
+ <!-- README_GPTQ.md-download-from-branches end -->
204
+ <!-- README_GPTQ.md-text-generation-webui start -->
205
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
206
+
207
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
208
+
209
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
210
+
211
+ 1. Click the **Model tab**.
212
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ`.
213
+
214
+ - To download from a specific branch, enter for example `TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ:gptq-4bit-128g-actorder_True`
215
+ - see Provided Files above for the list of branches for each option.
216
+
217
+ 3. Click **Download**.
218
+ 4. The model will start downloading. Once it's finished it will say "Done".
219
+ 5. In the top left, click the refresh icon next to **Model**.
220
+ 6. In the **Model** dropdown, choose the model you just downloaded: `DiscoLM-mixtral-8x7b-v2-GPTQ`
221
+ 7. The model will automatically load, and is now ready for use!
222
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
223
+
224
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
225
+
226
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
227
+
228
+ <!-- README_GPTQ.md-text-generation-webui end -->
229
+
230
+ <!-- README_GPTQ.md-use-from-tgi start -->
231
+ ## Serving this model from Text Generation Inference (TGI)
232
+
233
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
234
+
235
+ Example Docker parameters:
236
+
237
+ ```shell
238
+ --model-id TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
239
+ ```
240
+
241
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
242
+
243
+ ```shell
244
+ pip3 install huggingface-hub
245
+ ```
246
+
247
+ ```python
248
+ from huggingface_hub import InferenceClient
249
+
250
+ endpoint_url = "https://your-endpoint-url-here"
251
+
252
+ prompt = "Tell me about AI"
253
+ prompt_template=f'''<|im_start|>system
254
+ {system_message}<|im_end|>
255
+ <|im_start|>user
256
+ {prompt}<|im_end|>
257
+ <|im_start|>assistant
258
+ '''
259
+
260
+ client = InferenceClient(endpoint_url)
261
+ response = client.text_generation(prompt,
262
+ max_new_tokens=128,
263
+ do_sample=True,
264
+ temperature=0.7,
265
+ top_p=0.95,
266
+ top_k=40,
267
+ repetition_penalty=1.1)
268
+
269
+ print(f"Model output: {response}")
270
+ ```
271
+ <!-- README_GPTQ.md-use-from-tgi end -->
272
+ <!-- README_GPTQ.md-use-from-python start -->
273
+ ## Python code example: inference from this GPTQ model
274
+
275
+ ### Install the necessary packages
276
+
277
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
278
+
279
+ ```shell
280
+ pip3 install --upgrade transformers optimum
281
+ # If using PyTorch 2.1 + CUDA 12.x:
282
+ pip3 install --upgrade auto-gptq
283
+ # or, if using PyTorch 2.1 + CUDA 11.x:
284
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
285
+ ```
286
+
287
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
288
+
289
+ ```shell
290
+ pip3 uninstall -y auto-gptq
291
+ git clone https://github.com/PanQiWei/AutoGPTQ
292
+ cd AutoGPTQ
293
+ git checkout v0.5.1
294
+ pip3 install .
295
+ ```
296
+
297
+ ### Example Python code
298
+
299
+ ```python
300
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
301
+
302
+ model_name_or_path = "TheBloke/DiscoLM-mixtral-8x7b-v2-GPTQ"
303
+ # To use a different branch, change revision
304
+ # For example: revision="gptq-4bit-128g-actorder_True"
305
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
306
+ device_map="auto",
307
+ trust_remote_code=True,
308
+ revision="main")
309
+
310
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
311
+
312
+ prompt = "Tell me about AI"
313
+ prompt_template=f'''<|im_start|>system
314
+ {system_message}<|im_end|>
315
+ <|im_start|>user
316
+ {prompt}<|im_end|>
317
+ <|im_start|>assistant
318
+ '''
319
+
320
+ print("\n\n*** Generate:")
321
+
322
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
323
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
324
+ print(tokenizer.decode(output[0]))
325
+
326
+ # Inference can also be done using transformers' pipeline
327
+
328
+ print("*** Pipeline:")
329
+ pipe = pipeline(
330
+ "text-generation",
331
+ model=model,
332
+ tokenizer=tokenizer,
333
+ max_new_tokens=512,
334
+ do_sample=True,
335
+ temperature=0.7,
336
+ top_p=0.95,
337
+ top_k=40,
338
+ repetition_penalty=1.1
339
+ )
340
+
341
+ print(pipe(prompt_template)[0]['generated_text'])
342
+ ```
343
+ <!-- README_GPTQ.md-use-from-python end -->
344
+
345
+ <!-- README_GPTQ.md-compatibility start -->
346
+ ## Compatibility
347
+
348
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
349
+
350
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
351
+
352
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
353
+ <!-- README_GPTQ.md-compatibility end -->
354
+
355
+ <!-- footer start -->
356
+ <!-- 200823 -->
357
+ ## Discord
358
+
359
+ For further support, and discussions on these models and AI in general, join us at:
360
+
361
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
362
+
363
+ ## Thanks, and how to contribute
364
+
365
+ Thanks to the [chirper.ai](https://chirper.ai) team!
366
+
367
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
368
+
369
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
370
+
371
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
372
+
373
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
374
+
375
+ * Patreon: https://patreon.com/TheBlokeAI
376
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
377
+
378
+ **Special thanks to**: Aemon Algiz.
379
+
380
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
381
+
382
+
383
+ Thank you to all my generous patrons and donaters!
384
+
385
+ And thank you again to a16z for their generous grant.
386
+
387
+ <!-- footer end -->
388
+
389
+ # Original model card: Disco Research's Discolm Mixtral 8X7B v2
390
+
391
+
392
+
393
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62e3b6ab0c2a907c388e4965/IP6ULgm4XLcK_JLRz-WV4.png)
394
+ *Eight french experts sitting at a table. There's lots of wind.*
395
+
396
+ # DiscoLM Mixtral 8x7b alpha
397
+
398
+ **DiscoLM Mixtral 8x7b alpha** is an experimental 8x7b MoE model based on [Mistral AI´s Mixtral 8x7b](https://twitter.com/MistralAI/status/1733150512395038967).
399
+ This model is based on experimental code converting the model weights to huggingface format and enabling Transformers-based inference.
400
+ It was then finetuned on the Synthia, MethaMathQA und Capybara datasets.
401
+ DiscoLM Mixtral 8x7b alpha is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was created by [Björn Plüster](https://huggingface.co/bjoernp) with lots of support from the community.
402
+
403
+ **Many thanks to [HessianAI](https://hessian.ai/) for providing the compute resources for this project and to the great people at [LAION](https://laion.ai) without whom this project would not have been possible!**
404
+
405
+
406
+ ## Table of Contents
407
+
408
+ 1. [Download](#download)
409
+ 2. [Benchmarks](#benchmarks)
410
+ 3. [Prompt Format](#prompt-format)
411
+ 4. [Dataset](#datasets)
412
+ 5. [Acknowledgements](#acknowledgements)
413
+ 6. [Contact](#contact)
414
+ 7. [About DiscoResearch](#about-discoresearch)
415
+ 8. [Disclaimer](#disclaimer)
416
+
417
+ ## Download
418
+
419
+ **Please note that you have to run the model with `trust_remote_code=True` until the new arch is merged into transformers!**
420
+
421
+ | Huggingface | GPTQ | GGUF | AWQ | *Base Model* |
422
+ |-------|-------|-------|-------|-------|
423
+ | [Link](https://huggingface.co/DiscoResearch/DiscoLM-Mixtral-8x7b) | tbc | tbc | tbc | tbc |
424
+
425
+ ## Benchmarks
426
+
427
+ ### Huggingface Leaderboard
428
+
429
+ This model is still an early Alpha with experimental code and we can't guarantee that there all values are correct.
430
+ The following are the scores from our own evaluation.
431
+
432
+ | Metric | Value |
433
+ |-----------------------|-------|
434
+ | ARC (25-shot) | 67.32 |
435
+ | HellaSwag (10-shot) | 86.25 |
436
+ | MMLU (5-shot) | 70.72 |
437
+ | TruthfulQA (0-shot) | 54.17 |
438
+ | Winogrande (5-shot) | 80.72 |
439
+ | GSM8k (5-shot) | 25.09 (bad score. no clue why)|
440
+ | **Avg.** | **64.05** |
441
+
442
+
443
+ We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
444
+
445
+ ### FastEval
446
+ tbc
447
+
448
+ ### MTBench
449
+
450
+ tbc
451
+
452
+ ## Prompt Format
453
+
454
+ **Please note that you have to run the model with `trust_remote_code=True` until the new arch is merged into transformers!**
455
+
456
+ This model follows the ChatML format:
457
+
458
+ ```
459
+ <|im_start|>system
460
+ You are DiscoLM, a helpful assistant.
461
+ <|im_end|>
462
+ <|im_start|>user
463
+ Please tell me possible reasons to call a research collective "Disco Research"<|im_end|>
464
+ <|im_start|>assistant
465
+ ```
466
+
467
+ This formatting is also available via a pre-defined Transformers chat template, which means that lists of messages can be formatted for you with the apply_chat_template() method:
468
+
469
+ ```python
470
+ chat = [
471
+ {"role": "system", "content": "You are DiscoLM, a helpful assistant."},
472
+ {"role": "user", "content": "Please tell me possible reasons to call a research collective Disco Research"}
473
+ ]
474
+ tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
475
+ ```
476
+
477
+ If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get a tokenized and formatted conversation ready to pass to `model.generate()`.
478
+
479
+ Basic inference code:
480
+ ```python
481
+ import torch
482
+ from transformers import AutoModelForCausalLM, AutoTokenizer
483
+
484
+ model = AutoModelForCausalLM.from_pretrained("DiscoResearch/DiscoLM-mixtral-8x7b-v2", low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True)
485
+ tok = AutoTokenizer.from_pretrained("DiscoResearch/DiscoLM-mixtral-8x7b-v2")
486
+ chat = [
487
+ {"role": "system", "content": "You are DiscoLM, a helpful assistant."},
488
+ {"role": "user", "content": "Please tell me possible reasons to call a research collective Disco Research"}
489
+ ]
490
+ x = tokenizer.apply_chat_template(chat, tokenize=True, return_tensors="pt", add_generation_prompt=True).cuda()
491
+ x = model.generate(x, max_new_tokens=128).cpu()
492
+ print(tok.batch_decode(x))
493
+ ```
494
+
495
+ ## Datasets
496
+
497
+ The following datasets were used for training DiscoLM Mixtral 8x7b alpha:
498
+
499
+ * [Synthia](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
500
+ * [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
501
+ * NousReseach Capybara (currently not public)
502
+
503
+ Many thanks for all dataset providers/curators!
504
+
505
+ ## Contact
506
+
507
+ Best way to reach us is on our [Discord](https://discord.gg/S8W8B5nz3v).
508
+
509
+ ## About DiscoResearch
510
+
511
+ DiscoResearch is an aspiring open research community. Disco should be a place where researchers from many communities can come together to combine their expertise and create innovative and groundbreaking LLMs. Come join our Discord, share your opinions and ideas, and advance open LLM research with us!
512
+
513
+ ## Acknowledgements
514
+
515
+ Many thanks first and foremost to [Mistral AI](https://huggingface.co/mistralai) for releasing another awesome model and their release strategy that is much fun for the whole community.
516
+ Additionally, many thanks in particular to [Dmytro Dzhulgakov](https://huggingface.co/dzhulgakov) who was the first one with a running [inference implementation](https://github.com/dzhulgakov/llama-mistral), [Vik](https://huggingface.co/vikhyatk) who spotted a critical bug in our first implementation (he actually read the paper!), [winglian](https://huggingface.co/winglian) for helpful advice and Axolotl which was used to finetune the model, [MigTissera](https://huggingface.co/migtissera), [MetaMath](https://huggingface.co/meta-math) and [NousResearch](https://huggingface.co/NousResearch) for their great datasets, and everyone who participated in this awesome speedrun on either our, the [Nous Research](https://huggingface.co/NousResearch) or one of the other Discords (please contact us if we forgot to mention you here!).
517
+
518
+ **DiscoLM Mixtral is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was created by [Björn Plüster](https://huggingface.co/bjoernp).
519
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/); many thanks as well to [LAION](https://laion.ai) for their coordination and providing invaluable contacts + advice.**
520
+
521
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
522
+
523
+ ## Disclaimer
524
+
525
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
526
+ This model should only be used for research purposes.