TheBloke commited on
Commit
4f03760
·
1 Parent(s): 3680f69

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -17
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  datasets:
3
  - ehartford/dolphin
4
  inference: false
@@ -6,9 +7,15 @@ language:
6
  - en
7
  license: llama2
8
  model_creator: Eric Hartford
9
- model_link: https://huggingface.co/ehartford/dolphin-llama2-7b
10
  model_name: Dolphin Llama2 7B
11
  model_type: llama
 
 
 
 
 
 
 
12
  quantized_by: TheBloke
13
  ---
14
 
@@ -44,9 +51,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
44
  <!-- repositories-available start -->
45
  ## Repositories available
46
 
 
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ)
48
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GGUF)
49
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GGML)
50
  * [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/dolphin-llama2-7b)
51
  <!-- repositories-available end -->
52
 
@@ -62,6 +69,7 @@ ASSISTANT:
62
 
63
  <!-- prompt-template end -->
64
 
 
65
  <!-- README_GPTQ.md-provided-files start -->
66
  ## Provided files and GPTQ parameters
67
 
@@ -86,22 +94,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
86
 
87
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
88
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
89
- | [main](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
90
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
91
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
92
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
93
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
94
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
95
 
96
  <!-- README_GPTQ.md-provided-files end -->
97
 
98
  <!-- README_GPTQ.md-download-from-branches start -->
99
  ## How to download from branches
100
 
101
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Dolphin-Llama2-7B-GPTQ:gptq-4bit-32g-actorder_True`
102
  - With Git, you can clone a branch with:
103
  ```
104
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ
105
  ```
106
  - In Python Transformers code, the branch is the `revision` parameter; see below.
107
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -114,7 +122,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
114
 
115
  1. Click the **Model tab**.
116
  2. Under **Download custom model or LoRA**, enter `TheBloke/Dolphin-Llama2-7B-GPTQ`.
117
- - To download from a specific branch, enter for example `TheBloke/Dolphin-Llama2-7B-GPTQ:gptq-4bit-32g-actorder_True`
118
  - see Provided Files above for the list of branches for each option.
119
  3. Click **Download**.
120
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -162,10 +170,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
162
 
163
  model_name_or_path = "TheBloke/Dolphin-Llama2-7B-GPTQ"
164
  # To use a different branch, change revision
165
- # For example: revision="gptq-4bit-32g-actorder_True"
166
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
167
- torch_dtype=torch.float16,
168
  device_map="auto",
 
169
  revision="main")
170
 
171
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -180,7 +188,7 @@ ASSISTANT:
180
  print("\n\n*** Generate:")
181
 
182
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
183
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
184
  print(tokenizer.decode(output[0]))
185
 
186
  # Inference can also be done using transformers' pipeline
@@ -191,9 +199,11 @@ pipe = pipeline(
191
  model=model,
192
  tokenizer=tokenizer,
193
  max_new_tokens=512,
 
194
  temperature=0.7,
195
  top_p=0.95,
196
- repetition_penalty=1.15
 
197
  )
198
 
199
  print(pipe(prompt_template)[0]['generated_text'])
@@ -218,10 +228,12 @@ For further support, and discussions on these models and AI in general, join us
218
 
219
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
220
 
221
- ## Thanks, and how to contribute.
222
 
223
  Thanks to the [chirper.ai](https://chirper.ai) team!
224
 
 
 
225
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
226
 
227
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -233,7 +245,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
233
 
234
  **Special thanks to**: Aemon Algiz.
235
 
236
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
237
 
238
 
239
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/ehartford/dolphin-llama2-7b
3
  datasets:
4
  - ehartford/dolphin
5
  inference: false
 
7
  - en
8
  license: llama2
9
  model_creator: Eric Hartford
 
10
  model_name: Dolphin Llama2 7B
11
  model_type: llama
12
+ prompt_template: 'SYSTEM: {system_message}
13
+
14
+ USER: {prompt}
15
+
16
+ ASSISTANT:
17
+
18
+ '
19
  quantized_by: TheBloke
20
  ---
21
 
 
51
  <!-- repositories-available start -->
52
  ## Repositories available
53
 
54
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-AWQ)
55
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ)
56
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GGUF)
 
57
  * [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/dolphin-llama2-7b)
58
  <!-- repositories-available end -->
59
 
 
69
 
70
  <!-- prompt-template end -->
71
 
72
+
73
  <!-- README_GPTQ.md-provided-files start -->
74
  ## Provided files and GPTQ parameters
75
 
 
94
 
95
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
96
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
97
+ | [main](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, without Act Order and group size 128g. |
98
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
99
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
100
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
101
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
102
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
103
 
104
  <!-- README_GPTQ.md-provided-files end -->
105
 
106
  <!-- README_GPTQ.md-download-from-branches start -->
107
  ## How to download from branches
108
 
109
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Dolphin-Llama2-7B-GPTQ:main`
110
  - With Git, you can clone a branch with:
111
  ```
112
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/Dolphin-Llama2-7B-GPTQ
113
  ```
114
  - In Python Transformers code, the branch is the `revision` parameter; see below.
115
  <!-- README_GPTQ.md-download-from-branches end -->
 
122
 
123
  1. Click the **Model tab**.
124
  2. Under **Download custom model or LoRA**, enter `TheBloke/Dolphin-Llama2-7B-GPTQ`.
125
+ - To download from a specific branch, enter for example `TheBloke/Dolphin-Llama2-7B-GPTQ:main`
126
  - see Provided Files above for the list of branches for each option.
127
  3. Click **Download**.
128
  4. The model will start downloading. Once it's finished it will say "Done".
 
170
 
171
  model_name_or_path = "TheBloke/Dolphin-Llama2-7B-GPTQ"
172
  # To use a different branch, change revision
173
+ # For example: revision="main"
174
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
175
  device_map="auto",
176
+ trust_remote_code=False,
177
  revision="main")
178
 
179
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
188
  print("\n\n*** Generate:")
189
 
190
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
191
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
192
  print(tokenizer.decode(output[0]))
193
 
194
  # Inference can also be done using transformers' pipeline
 
199
  model=model,
200
  tokenizer=tokenizer,
201
  max_new_tokens=512,
202
+ do_sample=True,
203
  temperature=0.7,
204
  top_p=0.95,
205
+ top_k=40,
206
+ repetition_penalty=1.1
207
  )
208
 
209
  print(pipe(prompt_template)[0]['generated_text'])
 
228
 
229
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
230
 
231
+ ## Thanks, and how to contribute
232
 
233
  Thanks to the [chirper.ai](https://chirper.ai) team!
234
 
235
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
236
+
237
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
238
 
239
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
245
 
246
  **Special thanks to**: Aemon Algiz.
247
 
248
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
249
 
250
 
251
  Thank you to all my generous patrons and donaters!