TheBloke commited on
Commit
d5585ca
1 Parent(s): dea5b50

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +493 -0
README.md ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sethuiyer/Dr_Samantha-7b
3
+ datasets:
4
+ - GBaker/MedQA-USMLE-4-options
5
+ - cognitivecomputations/samantha-data
6
+ - shibing624/medical
7
+ inference: false
8
+ language:
9
+ - en
10
+ - zh
11
+ library_name: transformers
12
+ license: llama2
13
+ model_creator: Sethu Iyer
14
+ model_name: Dr Samantha 7B
15
+ model_type: llama
16
+ pipeline_tag: text-generation
17
+ prompt_template: 'Below is an instruction that describes a task. Write a response
18
+ that appropriately completes the request.
19
+
20
+
21
+ ### Instruction:
22
+
23
+ {prompt}
24
+
25
+
26
+ ### Response:
27
+
28
+ '
29
+ quantized_by: TheBloke
30
+ tags:
31
+ - llama
32
+ - merge
33
+ - medical
34
+ ---
35
+ <!-- markdownlint-disable MD041 -->
36
+
37
+ <!-- header start -->
38
+ <!-- 200823 -->
39
+ <div style="width: auto; margin-left: auto; margin-right: auto">
40
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
41
+ </div>
42
+ <div style="display: flex; justify-content: space-between; width: 100%;">
43
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
44
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
45
+ </div>
46
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
47
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
48
+ </div>
49
+ </div>
50
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
51
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
52
+ <!-- header end -->
53
+
54
+ # Dr Samantha 7B - AWQ
55
+ - Model creator: [Sethu Iyer](https://huggingface.co/sethuiyer)
56
+ - Original model: [Dr Samantha 7B](https://huggingface.co/sethuiyer/Dr_Samantha-7b)
57
+
58
+ <!-- description start -->
59
+ ## Description
60
+
61
+ This repo contains AWQ model files for [Sethu Iyer's Dr Samantha 7B](https://huggingface.co/sethuiyer/Dr_Samantha-7b).
62
+
63
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
64
+
65
+
66
+ ### About AWQ
67
+
68
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
69
+
70
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
71
+
72
+ It is supported by:
73
+
74
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
75
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
76
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
77
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
78
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
79
+
80
+ <!-- description end -->
81
+ <!-- repositories-available start -->
82
+ ## Repositories available
83
+
84
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Dr_Samantha-7B-AWQ)
85
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Dr_Samantha-7B-GPTQ)
86
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Dr_Samantha-7B-GGUF)
87
+ * [Sethu Iyer's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/sethuiyer/Dr_Samantha-7b)
88
+ <!-- repositories-available end -->
89
+
90
+ <!-- prompt-template start -->
91
+ ## Prompt template: Alpaca
92
+
93
+ ```
94
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
95
+
96
+ ### Instruction:
97
+ {prompt}
98
+
99
+ ### Response:
100
+
101
+ ```
102
+
103
+ <!-- prompt-template end -->
104
+
105
+
106
+ <!-- README_AWQ.md-provided-files start -->
107
+ ## Provided files, and AWQ parameters
108
+
109
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
110
+
111
+ Models are released as sharded safetensors files.
112
+
113
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
114
+ | ------ | ---- | -- | ----------- | ------- | ---- |
115
+ | [main](https://huggingface.co/TheBloke/Dr_Samantha-7B-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 2048 | 3.89 GB
116
+
117
+ <!-- README_AWQ.md-provided-files end -->
118
+
119
+ <!-- README_AWQ.md-text-generation-webui start -->
120
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
121
+
122
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
123
+
124
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
125
+
126
+ 1. Click the **Model tab**.
127
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Dr_Samantha-7B-AWQ`.
128
+ 3. Click **Download**.
129
+ 4. The model will start downloading. Once it's finished it will say "Done".
130
+ 5. In the top left, click the refresh icon next to **Model**.
131
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Dr_Samantha-7B-AWQ`
132
+ 7. Select **Loader: AutoAWQ**.
133
+ 8. Click Load, and the model will load and is now ready for use.
134
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
135
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
136
+ <!-- README_AWQ.md-text-generation-webui end -->
137
+
138
+ <!-- README_AWQ.md-use-from-vllm start -->
139
+ ## Multi-user inference server: vLLM
140
+
141
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
142
+
143
+ - Please ensure you are using vLLM version 0.2 or later.
144
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
145
+
146
+ For example:
147
+
148
+ ```shell
149
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Dr_Samantha-7B-AWQ --quantization awq --dtype auto
150
+ ```
151
+
152
+ - When using vLLM from Python code, again set `quantization=awq`.
153
+
154
+ For example:
155
+
156
+ ```python
157
+ from vllm import LLM, SamplingParams
158
+
159
+ prompts = [
160
+ "Tell me about AI",
161
+ "Write a story about llamas",
162
+ "What is 291 - 150?",
163
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
164
+ ]
165
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
166
+
167
+ ### Instruction:
168
+ {prompt}
169
+
170
+ ### Response:
171
+ '''
172
+
173
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
174
+
175
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
176
+
177
+ llm = LLM(model="TheBloke/Dr_Samantha-7B-AWQ", quantization="awq", dtype="auto")
178
+
179
+ outputs = llm.generate(prompts, sampling_params)
180
+
181
+ # Print the outputs.
182
+ for output in outputs:
183
+ prompt = output.prompt
184
+ generated_text = output.outputs[0].text
185
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
186
+ ```
187
+ <!-- README_AWQ.md-use-from-vllm start -->
188
+
189
+ <!-- README_AWQ.md-use-from-tgi start -->
190
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
191
+
192
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
193
+
194
+ Example Docker parameters:
195
+
196
+ ```shell
197
+ --model-id TheBloke/Dr_Samantha-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
198
+ ```
199
+
200
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
201
+
202
+ ```shell
203
+ pip3 install huggingface-hub
204
+ ```
205
+
206
+ ```python
207
+ from huggingface_hub import InferenceClient
208
+
209
+ endpoint_url = "https://your-endpoint-url-here"
210
+
211
+ prompt = "Tell me about AI"
212
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
213
+
214
+ ### Instruction:
215
+ {prompt}
216
+
217
+ ### Response:
218
+ '''
219
+
220
+ client = InferenceClient(endpoint_url)
221
+ response = client.text_generation(prompt,
222
+ max_new_tokens=128,
223
+ do_sample=True,
224
+ temperature=0.7,
225
+ top_p=0.95,
226
+ top_k=40,
227
+ repetition_penalty=1.1)
228
+
229
+ print(f"Model output: ", response)
230
+ ```
231
+ <!-- README_AWQ.md-use-from-tgi end -->
232
+
233
+ <!-- README_AWQ.md-use-from-python start -->
234
+ ## Inference from Python code using Transformers
235
+
236
+ ### Install the necessary packages
237
+
238
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
239
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
240
+
241
+ ```shell
242
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
243
+ ```
244
+
245
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
246
+
247
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
248
+
249
+ ```shell
250
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
251
+ ```
252
+
253
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
254
+
255
+ ```shell
256
+ pip3 uninstall -y autoawq
257
+ git clone https://github.com/casper-hansen/AutoAWQ
258
+ cd AutoAWQ
259
+ pip3 install .
260
+ ```
261
+
262
+ ### Transformers example code (requires Transformers 4.35.0 and later)
263
+
264
+ ```python
265
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
266
+
267
+ model_name_or_path = "TheBloke/Dr_Samantha-7B-AWQ"
268
+
269
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
270
+ model = AutoModelForCausalLM.from_pretrained(
271
+ model_name_or_path,
272
+ low_cpu_mem_usage=True,
273
+ device_map="cuda:0"
274
+ )
275
+
276
+ # Using the text streamer to stream output one token at a time
277
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
278
+
279
+ prompt = "Tell me about AI"
280
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
281
+
282
+ ### Instruction:
283
+ {prompt}
284
+
285
+ ### Response:
286
+ '''
287
+
288
+ # Convert prompt to tokens
289
+ tokens = tokenizer(
290
+ prompt_template,
291
+ return_tensors='pt'
292
+ ).input_ids.cuda()
293
+
294
+ generation_params = {
295
+ "do_sample": True,
296
+ "temperature": 0.7,
297
+ "top_p": 0.95,
298
+ "top_k": 40,
299
+ "max_new_tokens": 512,
300
+ "repetition_penalty": 1.1
301
+ }
302
+
303
+ # Generate streamed output, visible one token at a time
304
+ generation_output = model.generate(
305
+ tokens,
306
+ streamer=streamer,
307
+ **generation_params
308
+ )
309
+
310
+ # Generation without a streamer, which will include the prompt in the output
311
+ generation_output = model.generate(
312
+ tokens,
313
+ **generation_params
314
+ )
315
+
316
+ # Get the tokens from the output, decode them, print them
317
+ token_output = generation_output[0]
318
+ text_output = tokenizer.decode(token_output)
319
+ print("model.generate output: ", text_output)
320
+
321
+ # Inference is also possible via Transformers' pipeline
322
+ from transformers import pipeline
323
+
324
+ pipe = pipeline(
325
+ "text-generation",
326
+ model=model,
327
+ tokenizer=tokenizer,
328
+ **generation_params
329
+ )
330
+
331
+ pipe_output = pipe(prompt_template)[0]['generated_text']
332
+ print("pipeline output: ", pipe_output)
333
+
334
+ ```
335
+ <!-- README_AWQ.md-use-from-python end -->
336
+
337
+ <!-- README_AWQ.md-compatibility start -->
338
+ ## Compatibility
339
+
340
+ The files provided are tested to work with:
341
+
342
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
343
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
344
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
345
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
346
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
347
+
348
+ <!-- README_AWQ.md-compatibility end -->
349
+
350
+ <!-- footer start -->
351
+ <!-- 200823 -->
352
+ ## Discord
353
+
354
+ For further support, and discussions on these models and AI in general, join us at:
355
+
356
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
357
+
358
+ ## Thanks, and how to contribute
359
+
360
+ Thanks to the [chirper.ai](https://chirper.ai) team!
361
+
362
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
363
+
364
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
365
+
366
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
367
+
368
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
369
+
370
+ * Patreon: https://patreon.com/TheBlokeAI
371
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
372
+
373
+ **Special thanks to**: Aemon Algiz.
374
+
375
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
376
+
377
+
378
+ Thank you to all my generous patrons and donaters!
379
+
380
+ And thank you again to a16z for their generous grant.
381
+
382
+ <!-- footer end -->
383
+
384
+ # Original model card: Sethu Iyer's Dr Samantha 7B
385
+
386
+
387
+ # Dr. Samantha
388
+
389
+ <p align="center">
390
+ <img src="https://huggingface.co/sethuiyer/Dr_Samantha-7b/resolve/main/dr_samantha_anime_style_reduced_quality.webp" height="256px" alt="SynthIQ">
391
+ </p>
392
+
393
+ ## Overview
394
+
395
+ Dr. Samantha is a language model made by merging `Severus27/BeingWell_llama2_7b` and `ParthasarathyShanmugam/llama-2-7b-samantha` using [mergekit](https://github.com/cg123/mergekit).
396
+
397
+ Has capabilities of a medical knowledge-focused model (trained on USMLE databases and doctor-patient interactions) with the philosophical, psychological, and relational understanding of the Samantha-7b model.
398
+
399
+ As both a medical consultant and personal counselor, Dr.Samantha could effectively support both physical and mental wellbeing - important for whole-person care.
400
+
401
+
402
+ # Yaml Config
403
+
404
+ ```yaml
405
+
406
+ slices:
407
+ - sources:
408
+ - model: Severus27/BeingWell_llama2_7b
409
+ layer_range: [0, 32]
410
+ - model: ParthasarathyShanmugam/llama-2-7b-samantha
411
+ layer_range: [0, 32]
412
+
413
+ merge_method: slerp
414
+ base_model: TinyPixel/Llama-2-7B-bf16-sharded
415
+
416
+ parameters:
417
+ t:
418
+ - filter: self_attn
419
+ value: [0, 0.5, 0.3, 0.7, 1]
420
+ - filter: mlp
421
+ value: [1, 0.5, 0.7, 0.3, 0]
422
+ - value: 0.5 # fallback for rest of tensors
423
+ tokenizer_source: union
424
+
425
+ dtype: bfloat16
426
+
427
+ ```
428
+
429
+ ## Prompt Template
430
+
431
+ ```text
432
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
433
+
434
+ ### Instruction:
435
+ What is your name?
436
+
437
+ ### Response:
438
+ My name is Samantha.
439
+ ```
440
+
441
+ ## OpenLLM Leaderboard Performance
442
+ | T | Model | Average | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K |
443
+ |---|----------------------------------|---------|-------|-----------|-------|------------|------------|-------|
444
+ | 1 | sethuiyer/Dr_Samantha-7b | 52.95 | 53.84 | 77.95 | 47.94 | 45.58 | 73.56 | 18.8 |
445
+ | 2 | togethercomputer/LLaMA-2-7B-32K-Instruct | 50.02 | 51.11 | 78.51 | 46.11 | 44.86 | 73.88 | 5.69 |
446
+ | 3 | togethercomputer/LLaMA-2-7B-32K | 47.07 | 47.53 | 76.14 | 43.33 | 39.23 | 71.9 | 4.32 |
447
+
448
+
449
+ ## Subject-wise Accuracy
450
+
451
+ | Subject | Accuracy (%) |
452
+ |-----------------------|--------------|
453
+ | Clinical Knowledge | 52.83 |
454
+ | Medical Genetics | 49.00 |
455
+ | Human Aging | 58.29 |
456
+ | Human Sexuality | 55.73 |
457
+ | College Medicine | 38.73 |
458
+ | Anatomy | 41.48 |
459
+ | College Biology | 52.08 |
460
+ | College Medicine | 38.73 |
461
+ | High School Biology | 53.23 |
462
+ | Professional Medicine | 38.73 |
463
+ | Nutrition | 50.33 |
464
+ | Professional Psychology | 46.57 |
465
+ | Virology | 41.57 |
466
+ | High School Psychology | 66.60 |
467
+ | Average | 48.85% |
468
+
469
+
470
+ ## Evaluation by GPT-4 across 25 random prompts from ChatDoctor-200k Dataset
471
+
472
+ ### Overall Rating: 83.5/100
473
+
474
+ #### Pros:
475
+
476
+ - Demonstrates extensive medical knowledge through accurate identification of potential causes for various symptoms.
477
+ - Responses consistently emphasize the importance of seeking professional diagnoses and treatments.
478
+ - Advice to consult specialists for certain concerns is well-reasoned.
479
+ - Practical interim measures provided for symptom management in several cases.
480
+ - Consistent display of empathy, support, and reassurance for patients' well-being.
481
+ - Clear and understandable explanations of conditions and treatment options.
482
+ - Prompt responses addressing all aspects of medical inquiries.
483
+
484
+ #### Cons:
485
+
486
+ - Could occasionally place stronger emphasis on urgency when symptoms indicate potential emergencies.
487
+ - Discussion of differential diagnoses could explore a broader range of less common causes.
488
+ - Details around less common symptoms and their implications need more depth at times.
489
+ - Opportunities exist to gather clarifying details on symptom histories through follow-up questions.
490
+ - Consider exploring full medical histories to improve diagnostic context where relevant.
491
+ - Caution levels and risk factors associated with certain conditions could be underscored more.
492
+
493
+