TheBloke commited on
Commit
cede638
·
1 Parent(s): 1c63a83

Upload new GPTQs with varied parameters

Browse files
Files changed (1) hide show
  1. README.md +69 -29
README.md CHANGED
@@ -1,6 +1,7 @@
1
  ---
2
  inference: false
3
  license: other
 
4
  ---
5
 
6
  <!-- header start -->
@@ -9,7 +10,7 @@ license: other
9
  </div>
10
  <div style="display: flex; justify-content: space-between; width: 100%;">
11
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
- <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
13
  </div>
14
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
@@ -19,43 +20,80 @@ license: other
19
 
20
  # Concept of Mind's Flan Open Llama 7B GPTQ
21
 
22
- These files are GPTQ 4bit model files for [Concept of Mind's Flan Open Llama 7B](https://huggingface.co/conceptofmind/Flan-Open-Llama-7b).
23
 
24
- It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
 
 
25
 
26
  ## Repositories available
27
 
28
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Flan-OpenLlama-7B-GPTQ)
29
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Flan-OpenLlama-7B-GGML)
30
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/conceptofmind/Flan-Open-Llama-7b)
31
 
32
- ## How to easily download and use this model in text-generation-webui
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
- Please make sure you're using the latest version of text-generation-webui
35
 
36
  1. Click the **Model tab**.
37
  2. Under **Download custom model or LoRA**, enter `TheBloke/Flan-OpenLlama-7B-GPTQ`.
 
 
38
  3. Click **Download**.
39
  4. The model will start downloading. Once it's finished it will say "Done"
40
  5. In the top left, click the refresh icon next to **Model**.
41
  6. In the **Model** dropdown, choose the model you just downloaded: `Flan-OpenLlama-7B-GPTQ`
42
  7. The model will automatically load, and is now ready for use!
43
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
44
- * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
45
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
46
 
47
  ## How to use this GPTQ model from Python code
48
 
49
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
50
 
51
- `pip install auto-gptq`
52
 
53
  Then try the following example code:
54
 
55
  ```python
56
  from transformers import AutoTokenizer, pipeline, logging
57
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
58
- import argparse
59
 
60
  model_name_or_path = "TheBloke/Flan-OpenLlama-7B-GPTQ"
61
  model_basename = "flan-openllama-7b-GPTQ-4bit-128g.no-act.order"
@@ -65,17 +103,28 @@ use_triton = False
65
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
66
 
67
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
68
- model_basename=model_basename,
69
  use_safetensors=True,
70
- trust_remote_code=False,
71
  device="cuda:0",
72
  use_triton=use_triton,
73
  quantize_config=None)
74
 
75
- # Note: check the prompt template is correct for this model.
 
 
 
 
 
 
 
 
 
 
 
76
  prompt = "Tell me about AI"
77
- prompt_template=f'''USER: {prompt}
78
- ASSISTANT:'''
79
 
80
  print("\n\n*** Generate:")
81
 
@@ -102,27 +151,18 @@ pipe = pipeline(
102
  print(pipe(prompt_template)[0]['generated_text'])
103
  ```
104
 
105
- ## Provided files
106
-
107
- **flan-openllama-7b-GPTQ-4bit-128g.no-act.order.safetensors**
108
-
109
- This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
110
 
111
- It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
112
 
113
- * `flan-openllama-7b-GPTQ-4bit-128g.no-act.order.safetensors`
114
- * Works with AutoGPTQ in CUDA or Triton modes.
115
- * LLaMa models also work with [ExLlama](https://github.com/turboderp/exllama}, which usually provides much higher performance, and uses less VRAM, than AutoGPTQ.
116
- * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
117
- * Works with text-generation-webui, including one-click-installers.
118
- * Parameters: Groupsize = 128. Act Order / desc_act = False.
119
 
120
  <!-- footer start -->
121
  ## Discord
122
 
123
  For further support, and discussions on these models and AI in general, join us at:
124
 
125
- [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
126
 
127
  ## Thanks, and how to contribute.
128
 
@@ -137,9 +177,9 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
137
  * Patreon: https://patreon.com/TheBlokeAI
138
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
139
 
140
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
141
 
142
- **Patreon special mentions**: Mano Prime, Fen Risland, Derek Yates, Preetika Verma, webtim, Sean Connelly, Alps Aficionado, Karl Bernard, Junyu Yang, Nathan LeClaire, Chris McCloskey, Lone Striker, Asp the Wyvern, Eugene Pentland, Imad Khwaja, trip7s trip, WelcomeToTheClub, John Detwiler, Artur Olbinski, Khalefa Al-Ahmad, Trenton Dambrowitz, Talal Aujan, Kevin Schuppel, Luke Pendergrass, Pyrater, Joseph William Delisle, terasurfer , vamX, Gabriel Puliatti, David Flickinger, Jonathan Leane, Iucharbius , Luke, Deep Realms, Cory Kujawski, ya boyyy, Illia Dulskyi, senxiiz, Johann-Peter Hartmann, John Villwock, K, Ghost , Spiking Neurons AB, Nikolai Manek, Rainer Wilmers, Pierre Kircher, biorpg, Space Cruiser, Ai Maven, subjectnull, Willem Michiel, Ajan Kanaga, Kalila, chris gileta, Oscar Rangel.
143
 
144
  Thank you to all my generous patrons and donaters!
145
 
 
1
  ---
2
  inference: false
3
  license: other
4
+ model_type: llama
5
  ---
6
 
7
  <!-- header start -->
 
10
  </div>
11
  <div style="display: flex; justify-content: space-between; width: 100%;">
12
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
13
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
14
  </div>
15
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
16
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
 
20
 
21
  # Concept of Mind's Flan Open Llama 7B GPTQ
22
 
23
+ These files are GPTQ model files for [Concept of Mind's Flan Open Llama 7B](https://huggingface.co/conceptofmind/Flan-Open-Llama-7b).
24
 
25
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
26
+
27
+ These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
28
 
29
  ## Repositories available
30
 
31
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Flan-OpenLlama-7B-GPTQ)
32
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Flan-OpenLlama-7B-GGML)
33
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/conceptofmind/Flan-Open-Llama-7b)
34
 
35
+ ## Prompt template: Unknown
36
+
37
+ ```
38
+ {prompt}
39
+ ```
40
+
41
+ ## Provided files
42
+
43
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
44
+
45
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
46
+
47
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
48
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
49
+ | main | 4 | 128 | False | 4.00 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
50
+ | gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
51
+ | gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
52
+ | gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
53
+ | gptq-8bit--1g-actorder_True | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
54
+ | gptq-8bit-128g-actorder_False | 8 | 128 | False | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
55
+ | gptq-8bit-128g-actorder_True | 8 | 128 | True | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
56
+ | gptq-8bit-64g-actorder_True | 8 | 64 | True | 7.31 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
57
+
58
+ ## How to download from branches
59
+
60
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Flan-OpenLlama-7B-GPTQ:gptq-4bit-32g-actorder_True`
61
+ - With Git, you can clone a branch with:
62
+ ```
63
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Flan-OpenLlama-7B-GPTQ`
64
+ ```
65
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
66
+
67
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
68
+
69
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
70
 
71
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
72
 
73
  1. Click the **Model tab**.
74
  2. Under **Download custom model or LoRA**, enter `TheBloke/Flan-OpenLlama-7B-GPTQ`.
75
+ - To download from a specific branch, enter for example `TheBloke/Flan-OpenLlama-7B-GPTQ:gptq-4bit-32g-actorder_True`
76
+ - see Provided Files above for the list of branches for each option.
77
  3. Click **Download**.
78
  4. The model will start downloading. Once it's finished it will say "Done"
79
  5. In the top left, click the refresh icon next to **Model**.
80
  6. In the **Model** dropdown, choose the model you just downloaded: `Flan-OpenLlama-7B-GPTQ`
81
  7. The model will automatically load, and is now ready for use!
82
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
83
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
84
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
85
 
86
  ## How to use this GPTQ model from Python code
87
 
88
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
89
 
90
+ `GITHUB_ACTIONS=true pip install auto-gptq`
91
 
92
  Then try the following example code:
93
 
94
  ```python
95
  from transformers import AutoTokenizer, pipeline, logging
96
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
 
97
 
98
  model_name_or_path = "TheBloke/Flan-OpenLlama-7B-GPTQ"
99
  model_basename = "flan-openllama-7b-GPTQ-4bit-128g.no-act.order"
 
103
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
104
 
105
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
106
+ model_basename=model_basename
107
  use_safetensors=True,
108
+ trust_remote_code=True,
109
  device="cuda:0",
110
  use_triton=use_triton,
111
  quantize_config=None)
112
 
113
+ """
114
+ To download from a specific branch, use the revision parameter, as in this example:
115
+
116
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
117
+ revision="gptq-4bit-32g-actorder_True",
118
+ model_basename=model_basename,
119
+ use_safetensors=True,
120
+ trust_remote_code=True,
121
+ device="cuda:0",
122
+ quantize_config=None)
123
+ """
124
+
125
  prompt = "Tell me about AI"
126
+ prompt_template=f'''{prompt}
127
+ '''
128
 
129
  print("\n\n*** Generate:")
130
 
 
151
  print(pipe(prompt_template)[0]['generated_text'])
152
  ```
153
 
154
+ ## Compatibility
 
 
 
 
155
 
156
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
157
 
158
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
 
 
159
 
160
  <!-- footer start -->
161
  ## Discord
162
 
163
  For further support, and discussions on these models and AI in general, join us at:
164
 
165
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
166
 
167
  ## Thanks, and how to contribute.
168
 
 
177
  * Patreon: https://patreon.com/TheBlokeAI
178
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
179
 
180
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
181
 
182
+ **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
183
 
184
  Thank you to all my generous patrons and donaters!
185