Upload README.md
Browse files
README.md
CHANGED
@@ -46,13 +46,13 @@ The key benefit of GGUF is that it is a extensible, future-proof format which st
|
|
46 |
|
47 |
Here are a list of clients and libraries that are known to support GGUF:
|
48 |
* [llama.cpp](https://github.com/ggerganov/llama.cpp).
|
49 |
-
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI
|
50 |
-
* [KoboldCpp](https://github.com/LostRuins/koboldcpp),
|
51 |
-
* [LM Studio](https://lmstudio.ai/),
|
52 |
-
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui),
|
53 |
-
* [ctransformers](https://github.com/marella/ctransformers),
|
54 |
-
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python),
|
55 |
-
* [candle](https://github.com/huggingface/candle),
|
56 |
|
57 |
<!-- README_GGUF.md-about-gguf end -->
|
58 |
<!-- repositories-available start -->
|
@@ -103,14 +103,10 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
103 |
|
104 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
105 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
106 |
-
| [genz-70b.Q6_K.gguf-split-b](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q6_K.gguf-split-b) | Q6_K | 6 | 19.89 GB| 22.39 GB | very large, extremely low quality loss |
|
107 |
| [genz-70b.Q2_K.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
|
108 |
| [genz-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
|
109 |
| [genz-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
|
110 |
| [genz-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
|
111 |
-
| [genz-70b.Q8_0.gguf-split-b](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q8_0.gguf-split-b) | Q8_0 | 8 | 36.59 GB| 39.09 GB | very large, extremely low quality loss - not recommended |
|
112 |
-
| [genz-70b.Q6_K.gguf-split-a](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q6_K.gguf-split-a) | Q6_K | 6 | 36.70 GB| 39.20 GB | very large, extremely low quality loss |
|
113 |
-
| [genz-70b.Q8_0.gguf-split-a](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q8_0.gguf-split-a) | Q8_0 | 8 | 36.70 GB| 39.20 GB | very large, extremely low quality loss - not recommended |
|
114 |
| [genz-70b.Q4_0.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
|
115 |
| [genz-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
|
116 |
| [genz-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
|
|
|
46 |
|
47 |
Here are a list of clients and libraries that are known to support GGUF:
|
48 |
* [llama.cpp](https://github.com/ggerganov/llama.cpp).
|
49 |
+
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions.
|
50 |
+
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with full GPU accel across multiple platforms and GPU architectures. Especially good for story telling.
|
51 |
+
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
|
52 |
+
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
|
53 |
+
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
|
54 |
+
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
|
55 |
+
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
|
56 |
|
57 |
<!-- README_GGUF.md-about-gguf end -->
|
58 |
<!-- repositories-available start -->
|
|
|
103 |
|
104 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
105 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
|
|
106 |
| [genz-70b.Q2_K.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
|
107 |
| [genz-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
|
108 |
| [genz-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
|
109 |
| [genz-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
|
|
|
|
|
|
|
110 |
| [genz-70b.Q4_0.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
|
111 |
| [genz-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
|
112 |
| [genz-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
|