TheBloke commited on
Commit
c01463d
·
1 Parent(s): bb1e0e0

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -53
README.md CHANGED
@@ -1,10 +1,69 @@
1
  ---
 
2
  inference: false
3
- license: llama2
4
  model_creator: Zaraki Quem Parte
5
- model_link: https://huggingface.co/zarakiquemparte/hermeslimarp-l2-7b
6
  model_name: Hermes Lima RP L2 7B
7
  model_type: llama
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  quantized_by: TheBloke
9
  tags:
10
  - llama-2
@@ -42,9 +101,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
42
  <!-- repositories-available start -->
43
  ## Repositories available
44
 
 
45
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ)
46
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GGUF)
47
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GGML)
48
  * [Zaraki Quem Parte's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/zarakiquemparte/hermeslimarp-l2-7b)
49
  <!-- repositories-available end -->
50
 
@@ -94,7 +153,15 @@ LimaRP instruction format:
94
 
95
 
96
  <!-- prompt-template end -->
 
 
 
 
 
 
97
 
 
 
98
  <!-- README_GPTQ.md-provided-files start -->
99
  ## Provided files and GPTQ parameters
100
 
@@ -119,22 +186,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
119
 
120
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
121
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
122
- | [main](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
123
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
124
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
125
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
126
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
127
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
128
 
129
  <!-- README_GPTQ.md-provided-files end -->
130
 
131
  <!-- README_GPTQ.md-download-from-branches start -->
132
  ## How to download from branches
133
 
134
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/HermesLimaRP-L2-7B-GPTQ:gptq-4bit-32g-actorder_True`
135
  - With Git, you can clone a branch with:
136
  ```
137
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ
138
  ```
139
  - In Python Transformers code, the branch is the `revision` parameter; see below.
140
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -147,7 +214,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
147
 
148
  1. Click the **Model tab**.
149
  2. Under **Download custom model or LoRA**, enter `TheBloke/HermesLimaRP-L2-7B-GPTQ`.
150
- - To download from a specific branch, enter for example `TheBloke/HermesLimaRP-L2-7B-GPTQ:gptq-4bit-32g-actorder_True`
151
  - see Provided Files above for the list of branches for each option.
152
  3. Click **Download**.
153
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -195,62 +262,28 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
195
 
196
  model_name_or_path = "TheBloke/HermesLimaRP-L2-7B-GPTQ"
197
  # To use a different branch, change revision
198
- # For example: revision="gptq-4bit-32g-actorder_True"
199
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
200
- torch_dtype=torch.float16,
201
  device_map="auto",
 
202
  revision="main")
203
 
204
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
205
 
206
  prompt = "Tell me about AI"
207
- prompt_template=f'''Since this is a merge between Nous Hermes and LimaRP, the
208
- following instruction formats should work:
209
-
210
-
211
- Alpaca 2:
212
-
213
-
214
- ```
215
 
216
  ### Instruction:
217
-
218
  {prompt}
219
 
220
-
221
  ### Response:
222
 
223
- <leave a newline blank for model to respond>
224
-
225
- ```
226
-
227
- LimaRP instruction format:
228
-
229
-
230
- ```
231
-
232
- <<SYSTEM>>
233
-
234
- <character card and system prompt>
235
-
236
-
237
- <<USER>>
238
-
239
- {prompt}
240
-
241
-
242
- <<AIBOT>>
243
-
244
- <leave a newline blank for model to respond>
245
-
246
- ```
247
-
248
  '''
249
 
250
  print("\n\n*** Generate:")
251
 
252
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
253
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
254
  print(tokenizer.decode(output[0]))
255
 
256
  # Inference can also be done using transformers' pipeline
@@ -261,9 +294,11 @@ pipe = pipeline(
261
  model=model,
262
  tokenizer=tokenizer,
263
  max_new_tokens=512,
 
264
  temperature=0.7,
265
  top_p=0.95,
266
- repetition_penalty=1.15
 
267
  )
268
 
269
  print(pipe(prompt_template)[0]['generated_text'])
@@ -288,10 +323,12 @@ For further support, and discussions on these models and AI in general, join us
288
 
289
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
290
 
291
- ## Thanks, and how to contribute.
292
 
293
  Thanks to the [chirper.ai](https://chirper.ai) team!
294
 
 
 
295
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
296
 
297
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -303,7 +340,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
303
 
304
  **Special thanks to**: Aemon Algiz.
305
 
306
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
307
 
308
 
309
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/zarakiquemparte/hermeslimarp-l2-7b
3
  inference: false
4
+ license: other
5
  model_creator: Zaraki Quem Parte
 
6
  model_name: Hermes Lima RP L2 7B
7
  model_type: llama
8
+ prompt_template: 'Since this is a merge between Nous Hermes and LimaRP, the
9
+
10
+ following instruction formats should work:
11
+
12
+
13
+
14
+ Alpaca 2:
15
+
16
+
17
+
18
+ ```
19
+
20
+
21
+ ### Instruction:
22
+
23
+
24
+ {prompt}
25
+
26
+
27
+
28
+ ### Response:
29
+
30
+
31
+ <leave a newline blank for model to respond>
32
+
33
+
34
+ ```
35
+
36
+
37
+ LimaRP instruction format:
38
+
39
+
40
+
41
+ ```
42
+
43
+
44
+ <<SYSTEM>>
45
+
46
+
47
+ <character card and system prompt>
48
+
49
+
50
+
51
+ <<USER>>
52
+
53
+
54
+ {prompt}
55
+
56
+
57
+
58
+ <<AIBOT>>
59
+
60
+
61
+ <leave a newline blank for model to respond>
62
+
63
+
64
+ ```
65
+
66
+ '
67
  quantized_by: TheBloke
68
  tags:
69
  - llama-2
 
101
  <!-- repositories-available start -->
102
  ## Repositories available
103
 
104
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-AWQ)
105
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ)
106
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GGUF)
 
107
  * [Zaraki Quem Parte's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/zarakiquemparte/hermeslimarp-l2-7b)
108
  <!-- repositories-available end -->
109
 
 
153
 
154
 
155
  <!-- prompt-template end -->
156
+ <!-- licensing start -->
157
+ ## Licensing
158
+
159
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
160
+
161
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
162
 
163
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Zaraki Quem Parte's Hermes Lima RP L2 7B](https://huggingface.co/zarakiquemparte/hermeslimarp-l2-7b).
164
+ <!-- licensing end -->
165
  <!-- README_GPTQ.md-provided-files start -->
166
  ## Provided files and GPTQ parameters
167
 
 
186
 
187
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
188
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
189
+ | [main](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, without Act Order and group size 128g. |
190
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
191
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
192
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
193
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
194
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
195
 
196
  <!-- README_GPTQ.md-provided-files end -->
197
 
198
  <!-- README_GPTQ.md-download-from-branches start -->
199
  ## How to download from branches
200
 
201
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/HermesLimaRP-L2-7B-GPTQ:main`
202
  - With Git, you can clone a branch with:
203
  ```
204
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/HermesLimaRP-L2-7B-GPTQ
205
  ```
206
  - In Python Transformers code, the branch is the `revision` parameter; see below.
207
  <!-- README_GPTQ.md-download-from-branches end -->
 
214
 
215
  1. Click the **Model tab**.
216
  2. Under **Download custom model or LoRA**, enter `TheBloke/HermesLimaRP-L2-7B-GPTQ`.
217
+ - To download from a specific branch, enter for example `TheBloke/HermesLimaRP-L2-7B-GPTQ:main`
218
  - see Provided Files above for the list of branches for each option.
219
  3. Click **Download**.
220
  4. The model will start downloading. Once it's finished it will say "Done".
 
262
 
263
  model_name_or_path = "TheBloke/HermesLimaRP-L2-7B-GPTQ"
264
  # To use a different branch, change revision
265
+ # For example: revision="main"
266
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
267
  device_map="auto",
268
+ trust_remote_code=False,
269
  revision="main")
270
 
271
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
272
 
273
  prompt = "Tell me about AI"
274
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
 
 
 
 
 
 
 
275
 
276
  ### Instruction:
 
277
  {prompt}
278
 
 
279
  ### Response:
280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281
  '''
282
 
283
  print("\n\n*** Generate:")
284
 
285
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
286
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
287
  print(tokenizer.decode(output[0]))
288
 
289
  # Inference can also be done using transformers' pipeline
 
294
  model=model,
295
  tokenizer=tokenizer,
296
  max_new_tokens=512,
297
+ do_sample=True,
298
  temperature=0.7,
299
  top_p=0.95,
300
+ top_k=40,
301
+ repetition_penalty=1.1
302
  )
303
 
304
  print(pipe(prompt_template)[0]['generated_text'])
 
323
 
324
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
325
 
326
+ ## Thanks, and how to contribute
327
 
328
  Thanks to the [chirper.ai](https://chirper.ai) team!
329
 
330
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
331
+
332
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
333
 
334
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
340
 
341
  **Special thanks to**: Aemon Algiz.
342
 
343
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
344
 
345
 
346
  Thank you to all my generous patrons and donaters!