TheBloke commited on
Commit
d82c60a
·
1 Parent(s): 8b0a4ed

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +334 -0
README.md ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/rombodawg/LosslessMegaCoder-llama2-13b-mini
3
+ datasets:
4
+ - rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored
5
+ inference: false
6
+ license: llama2
7
+ model_creator: Rombo Dawg
8
+ model_name: LosslessMegaCoder Llama2 13B Mini
9
+ model_type: llama
10
+ prompt_template: '<|im_start|>system
11
+
12
+ {system_message}<|im_end|>
13
+
14
+ <|im_start|>user
15
+
16
+ {prompt}<|im_end|>
17
+
18
+ <|im_start|>assistant
19
+
20
+ '
21
+ quantized_by: TheBloke
22
+ ---
23
+
24
+ <!-- header start -->
25
+ <!-- 200823 -->
26
+ <div style="width: auto; margin-left: auto; margin-right: auto">
27
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
28
+ </div>
29
+ <div style="display: flex; justify-content: space-between; width: 100%;">
30
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
31
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
32
+ </div>
33
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
34
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
35
+ </div>
36
+ </div>
37
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
38
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
39
+ <!-- header end -->
40
+
41
+ # LosslessMegaCoder Llama2 13B Mini - AWQ
42
+ - Model creator: [Rombo Dawg](https://huggingface.co/rombodawg)
43
+ - Original model: [LosslessMegaCoder Llama2 13B Mini](https://huggingface.co/rombodawg/LosslessMegaCoder-llama2-13b-mini)
44
+
45
+ <!-- description start -->
46
+ ## Description
47
+
48
+ This repo contains AWQ model files for [Rombo Dawg's LosslessMegaCoder Llama2 13B Mini](https://huggingface.co/rombodawg/LosslessMegaCoder-llama2-13b-mini).
49
+
50
+
51
+ ### About AWQ
52
+
53
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
54
+
55
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
56
+ <!-- description end -->
57
+ <!-- repositories-available start -->
58
+ ## Repositories available
59
+
60
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/LosslessMegaCoder-Llama2-13B-Mini-AWQ)
61
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LosslessMegaCoder-Llama2-13B-Mini-GPTQ)
62
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LosslessMegaCoder-Llama2-13B-Mini-GGUF)
63
+ * [Rombo Dawg's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/rombodawg/LosslessMegaCoder-llama2-13b-mini)
64
+ <!-- repositories-available end -->
65
+
66
+ <!-- prompt-template start -->
67
+ ## Prompt template: ChatML
68
+
69
+ ```
70
+ <|im_start|>system
71
+ {system_message}<|im_end|>
72
+ <|im_start|>user
73
+ {prompt}<|im_end|>
74
+ <|im_start|>assistant
75
+
76
+ ```
77
+
78
+ <!-- prompt-template end -->
79
+
80
+
81
+ <!-- README_AWQ.md-provided-files start -->
82
+ ## Provided files and AWQ parameters
83
+
84
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
85
+
86
+ Models are released as sharded safetensors files.
87
+
88
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
89
+ | ------ | ---- | -- | ----------- | ------- | ---- |
90
+ | [main](https://huggingface.co/TheBloke/LosslessMegaCoder-Llama2-13B-Mini-AWQ/tree/main) | 4 | 128 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 7.25 GB
91
+
92
+ <!-- README_AWQ.md-provided-files end -->
93
+
94
+ <!-- README_AWQ.md-use-from-vllm start -->
95
+ ## Serving this model from vLLM
96
+
97
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
98
+
99
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
100
+
101
+ ```shell
102
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/LosslessMegaCoder-Llama2-13B-Mini-AWQ --quantization awq
103
+ ```
104
+
105
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
106
+
107
+ ```python
108
+ from vllm import LLM, SamplingParams
109
+
110
+ prompts = [
111
+ "Hello, my name is",
112
+ "The president of the United States is",
113
+ "The capital of France is",
114
+ "The future of AI is",
115
+ ]
116
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
117
+
118
+ llm = LLM(model="TheBloke/LosslessMegaCoder-Llama2-13B-Mini-AWQ", quantization="awq")
119
+
120
+ outputs = llm.generate(prompts, sampling_params)
121
+
122
+ # Print the outputs.
123
+ for output in outputs:
124
+ prompt = output.prompt
125
+ generated_text = output.outputs[0].text
126
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
127
+ ```
128
+ <!-- README_AWQ.md-use-from-vllm start -->
129
+
130
+ <!-- README_AWQ.md-use-from-python start -->
131
+ ## How to use this AWQ model from Python code
132
+
133
+ ### Install the necessary packages
134
+
135
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
136
+
137
+ ```shell
138
+ pip3 install autoawq
139
+ ```
140
+
141
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
142
+
143
+ ```shell
144
+ pip3 uninstall -y autoawq
145
+ git clone https://github.com/casper-hansen/AutoAWQ
146
+ cd AutoAWQ
147
+ pip3 install .
148
+ ```
149
+
150
+ ### You can then try the following example code
151
+
152
+ ```python
153
+ from awq import AutoAWQForCausalLM
154
+ from transformers import AutoTokenizer
155
+
156
+ model_name_or_path = "TheBloke/LosslessMegaCoder-Llama2-13B-Mini-AWQ"
157
+
158
+ # Load model
159
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
160
+ trust_remote_code=False, safetensors=True)
161
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
162
+
163
+ prompt = "Tell me about AI"
164
+ prompt_template=f'''<|im_start|>system
165
+ {system_message}<|im_end|>
166
+ <|im_start|>user
167
+ {prompt}<|im_end|>
168
+ <|im_start|>assistant
169
+
170
+ '''
171
+
172
+ print("\n\n*** Generate:")
173
+
174
+ tokens = tokenizer(
175
+ prompt_template,
176
+ return_tensors='pt'
177
+ ).input_ids.cuda()
178
+
179
+ # Generate output
180
+ generation_output = model.generate(
181
+ tokens,
182
+ do_sample=True,
183
+ temperature=0.7,
184
+ top_p=0.95,
185
+ top_k=40,
186
+ max_new_tokens=512
187
+ )
188
+
189
+ print("Output: ", tokenizer.decode(generation_output[0]))
190
+
191
+ # Inference can also be done using transformers' pipeline
192
+ from transformers import pipeline
193
+
194
+ print("*** Pipeline:")
195
+ pipe = pipeline(
196
+ "text-generation",
197
+ model=model,
198
+ tokenizer=tokenizer,
199
+ max_new_tokens=512,
200
+ do_sample=True,
201
+ temperature=0.7,
202
+ top_p=0.95,
203
+ top_k=40,
204
+ repetition_penalty=1.1
205
+ )
206
+
207
+ print(pipe(prompt_template)[0]['generated_text'])
208
+ ```
209
+ <!-- README_AWQ.md-use-from-python end -->
210
+
211
+ <!-- README_AWQ.md-compatibility start -->
212
+ ## Compatibility
213
+
214
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
215
+
216
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
217
+ <!-- README_AWQ.md-compatibility end -->
218
+
219
+ <!-- footer start -->
220
+ <!-- 200823 -->
221
+ ## Discord
222
+
223
+ For further support, and discussions on these models and AI in general, join us at:
224
+
225
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
226
+
227
+ ## Thanks, and how to contribute
228
+
229
+ Thanks to the [chirper.ai](https://chirper.ai) team!
230
+
231
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
232
+
233
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
234
+
235
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
236
+
237
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
238
+
239
+ * Patreon: https://patreon.com/TheBlokeAI
240
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
241
+
242
+ **Special thanks to**: Aemon Algiz.
243
+
244
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
245
+
246
+
247
+ Thank you to all my generous patrons and donaters!
248
+
249
+ And thank you again to a16z for their generous grant.
250
+
251
+ <!-- footer end -->
252
+
253
+ # Original model card: Rombo Dawg's LosslessMegaCoder Llama2 13B Mini
254
+
255
+ ___________________________
256
+ - Please note this model was not trained on the rombodawg/LosslessMegaCodeTrainingV3_MINI dataset, despite the name similarity. You can find the training data at the bottom of the model card labeled (megacode2-min100)
257
+ ___________________________
258
+
259
+ This is one of the first models trained on the LosslessMegaCodeTrainingV2_1m_Evol_Uncensored dataset. The version of the dataset used for this model was filtered by removed any data with less than 100 tokens but plans for much more refined filtering are in the works
260
+
261
+ - This model was made as a colaboration between me and andreaskoepf who is an affiliate of Open Assistant.
262
+
263
+ This Model score .29 on humaneval+ the same as LLaMA-2 70B Chat Link bellow (in this benchmark the model is called andreaskoepf/llama2-13b-megacode2_min100)
264
+
265
+ - https://tju01.github.io/FastEval-OpenAssistant/
266
+
267
+ Prompt template:
268
+
269
+ - chatml format is used: "<|im_start|>system\n{system message}<|im_end|>\n<|im_start|>user\n{user prompt}<|im_end|>\n<|im_start|>assistant\n{Assistant answer}<|im_end|>\n"
270
+
271
+ multi-line:
272
+ ```
273
+ <|im_start|>system
274
+ {system message}<|im_end|>
275
+ <|im_start|>user
276
+ {user prompt}<|im_end|>
277
+ <|im_start|>assistant
278
+ {Assistant answer}<|im_end|>
279
+ ```
280
+ Gpt4all template:
281
+
282
+ - System prompt
283
+ ```
284
+ <|im_start|>system
285
+ "Below is an instruction that describes a task. Write a response that appropriately completes the request."
286
+ ```
287
+ - Prompt template
288
+ ```
289
+ <|im_end|>
290
+ <|im_start|>user
291
+ "%1"<|im_end|>
292
+ <|im_start|>assistant
293
+ ```
294
+
295
+ Oobagooba Text-Generation-Webui Template
296
+ - user:
297
+ ```
298
+ <|im_start|>user
299
+ {User string}<|im_end|>
300
+ ```
301
+ - bot:
302
+ ```
303
+ <|im_start|>assistant
304
+ {Bot string}<|im_end|>
305
+ ```
306
+ - turn_template:
307
+ ```
308
+ <|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n
309
+ ```
310
+ - context:
311
+ ```
312
+ <|im_start|>system
313
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.<|im_end|>
314
+ ```
315
+
316
+ Current quantizations available:
317
+
318
+ - https://huggingface.co/TheBloke/LosslessMegaCoder-Llama2-13B-Mini-GPTQ
319
+
320
+ Training data:
321
+
322
+ - https://wandb.ai/open-assistant/epfl-mt-sft/runs/run34_megacode2_min100_13b
323
+
324
+ The link for the full dataset is bellow:
325
+
326
+ - https://huggingface.co/datasets/rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored
327
+
328
+ Link for the filtered dataset used to make this model are bellow:
329
+
330
+ - https://huggingface.co/datasets/andreaskoepf/megacode2-min100
331
+
332
+ The original posting for this model was uploaded at the link bellow.
333
+
334
+ - https://huggingface.co/andreaskoepf/llama2-13b-megacode2_min100