Transformers
GGUF
llama
Not-For-All-Audiences
nsfw
TheBloke commited on
Commit
d3890cd
1 Parent(s): 94aa8b7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +417 -0
README.md ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/Undi95/MLewd-ReMM-L2-Chat-20b-inverted
3
+ inference: false
4
+ license: cc-by-nc-4.0
5
+ model_creator: Undi95
6
+ model_name: MLewd ReMM L2 Chat 20b Inverted
7
+ model_type: llama
8
+ prompt_template: 'Below is an instruction that describes a task. Write a response
9
+ that appropriately completes the request.
10
+
11
+
12
+ ### Instruction:
13
+
14
+ {prompt}
15
+
16
+
17
+ ### Response:
18
+
19
+ '
20
+ quantized_by: TheBloke
21
+ tags:
22
+ - not-for-all-audiences
23
+ - nsfw
24
+ ---
25
+
26
+ <!-- header start -->
27
+ <!-- 200823 -->
28
+ <div style="width: auto; margin-left: auto; margin-right: auto">
29
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
30
+ </div>
31
+ <div style="display: flex; justify-content: space-between; width: 100%;">
32
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
33
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
34
+ </div>
35
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
36
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
37
+ </div>
38
+ </div>
39
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
40
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
41
+ <!-- header end -->
42
+
43
+ # MLewd ReMM L2 Chat 20b Inverted - GGUF
44
+ - Model creator: [Undi95](https://huggingface.co/Undi95)
45
+ - Original model: [MLewd ReMM L2 Chat 20b Inverted](https://huggingface.co/Undi95/MLewd-ReMM-L2-Chat-20b-inverted)
46
+
47
+ <!-- description start -->
48
+ ## Description
49
+
50
+ This repo contains GGUF format model files for [Undi95's MLewd ReMM L2 Chat 20b Inverted](https://huggingface.co/Undi95/MLewd-ReMM-L2-Chat-20b-inverted).
51
+
52
+ <!-- description end -->
53
+ <!-- README_GGUF.md-about-gguf start -->
54
+ ### About GGUF
55
+
56
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
57
+
58
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
59
+
60
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
61
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
62
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
63
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
64
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
65
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
66
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
67
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
68
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
69
+
70
+ <!-- README_GGUF.md-about-gguf end -->
71
+ <!-- repositories-available start -->
72
+ ## Repositories available
73
+
74
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-AWQ)
75
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GPTQ)
76
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF)
77
+ * [Undi95's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Undi95/MLewd-ReMM-L2-Chat-20b-inverted)
78
+ <!-- repositories-available end -->
79
+
80
+ <!-- prompt-template start -->
81
+ ## Prompt template: Alpaca
82
+
83
+ ```
84
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
85
+
86
+ ### Instruction:
87
+ {prompt}
88
+
89
+ ### Response:
90
+
91
+ ```
92
+
93
+ <!-- prompt-template end -->
94
+ <!-- licensing start -->
95
+ ## Licensing
96
+
97
+ The creator of the source model has listed its license as `cc-by-nc-4.0`, and this quantization has therefore used that same license.
98
+
99
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
100
+
101
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Undi95's MLewd ReMM L2 Chat 20b Inverted](https://huggingface.co/Undi95/MLewd-ReMM-L2-Chat-20b-inverted).
102
+ <!-- licensing end -->
103
+ <!-- compatibility_gguf start -->
104
+ ## Compatibility
105
+
106
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
107
+
108
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
109
+
110
+ ## Explanation of quantisation methods
111
+ <details>
112
+ <summary>Click to see details</summary>
113
+
114
+ The new methods available are:
115
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
116
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
117
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
118
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
119
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
120
+
121
+ Refer to the Provided Files table below to see what files use which methods, and how.
122
+ </details>
123
+ <!-- compatibility_gguf end -->
124
+
125
+ <!-- README_GGUF.md-provided-files start -->
126
+ ## Provided files
127
+
128
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
129
+ | ---- | ---- | ---- | ---- | ---- | ----- |
130
+ | [mlewd-remm-l2-chat-20b-inverted.Q2_K.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q2_K.gguf) | Q2_K | 2 | 8.31 GB| 10.81 GB | smallest, significant quality loss - not recommended for most purposes |
131
+ | [mlewd-remm-l2-chat-20b-inverted.Q3_K_S.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q3_K_S.gguf) | Q3_K_S | 3 | 8.66 GB| 11.16 GB | very small, high quality loss |
132
+ | [mlewd-remm-l2-chat-20b-inverted.Q3_K_M.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q3_K_M.gguf) | Q3_K_M | 3 | 9.70 GB| 12.20 GB | very small, high quality loss |
133
+ | [mlewd-remm-l2-chat-20b-inverted.Q3_K_L.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q3_K_L.gguf) | Q3_K_L | 3 | 10.63 GB| 13.13 GB | small, substantial quality loss |
134
+ | [mlewd-remm-l2-chat-20b-inverted.Q4_0.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q4_0.gguf) | Q4_0 | 4 | 11.29 GB| 13.79 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
135
+ | [mlewd-remm-l2-chat-20b-inverted.Q4_K_S.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q4_K_S.gguf) | Q4_K_S | 4 | 11.34 GB| 13.84 GB | small, greater quality loss |
136
+ | [mlewd-remm-l2-chat-20b-inverted.Q4_K_M.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q4_K_M.gguf) | Q4_K_M | 4 | 12.04 GB| 14.54 GB | medium, balanced quality - recommended |
137
+ | [mlewd-remm-l2-chat-20b-inverted.Q5_0.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q5_0.gguf) | Q5_0 | 5 | 13.77 GB| 16.27 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
138
+ | [mlewd-remm-l2-chat-20b-inverted.Q5_K_S.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q5_K_S.gguf) | Q5_K_S | 5 | 13.77 GB| 16.27 GB | large, low quality loss - recommended |
139
+ | [mlewd-remm-l2-chat-20b-inverted.Q5_K_M.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q5_K_M.gguf) | Q5_K_M | 5 | 14.16 GB| 16.66 GB | large, very low quality loss - recommended |
140
+ | [mlewd-remm-l2-chat-20b-inverted.Q6_K.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q6_K.gguf) | Q6_K | 6 | 16.40 GB| 18.90 GB | very large, extremely low quality loss |
141
+ | [mlewd-remm-l2-chat-20b-inverted.Q8_0.gguf](https://huggingface.co/TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF/blob/main/mlewd-remm-l2-chat-20b-inverted.Q8_0.gguf) | Q8_0 | 8 | 21.25 GB| 23.75 GB | very large, extremely low quality loss - not recommended |
142
+
143
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
144
+
145
+
146
+
147
+ <!-- README_GGUF.md-provided-files end -->
148
+
149
+ <!-- README_GGUF.md-how-to-download start -->
150
+ ## How to download GGUF files
151
+
152
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
153
+
154
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
155
+ - LM Studio
156
+ - LoLLMS Web UI
157
+ - Faraday.dev
158
+
159
+ ### In `text-generation-webui`
160
+
161
+ Under Download Model, you can enter the model repo: TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF and below it, a specific filename to download, such as: mlewd-remm-l2-chat-20b-inverted.Q4_K_M.gguf.
162
+
163
+ Then click Download.
164
+
165
+ ### On the command line, including multiple files at once
166
+
167
+ I recommend using the `huggingface-hub` Python library:
168
+
169
+ ```shell
170
+ pip3 install huggingface-hub
171
+ ```
172
+
173
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
174
+
175
+ ```shell
176
+ huggingface-cli download TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF mlewd-remm-l2-chat-20b-inverted.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
177
+ ```
178
+
179
+ <details>
180
+ <summary>More advanced huggingface-cli download usage</summary>
181
+
182
+ You can also download multiple files at once with a pattern:
183
+
184
+ ```shell
185
+ huggingface-cli download TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
186
+ ```
187
+
188
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
189
+
190
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
191
+
192
+ ```shell
193
+ pip3 install hf_transfer
194
+ ```
195
+
196
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
197
+
198
+ ```shell
199
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF mlewd-remm-l2-chat-20b-inverted.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
200
+ ```
201
+
202
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
203
+ </details>
204
+ <!-- README_GGUF.md-how-to-download end -->
205
+
206
+ <!-- README_GGUF.md-how-to-run start -->
207
+ ## Example `llama.cpp` command
208
+
209
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
210
+
211
+ ```shell
212
+ ./main -ngl 32 -m mlewd-remm-l2-chat-20b-inverted.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
213
+ ```
214
+
215
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
216
+
217
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
218
+
219
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
220
+
221
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
222
+
223
+ ## How to run in `text-generation-webui`
224
+
225
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
226
+
227
+ ## How to run from Python code
228
+
229
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
230
+
231
+ ### How to load this model in Python code, using ctransformers
232
+
233
+ #### First install the package
234
+
235
+ Run one of the following commands, according to your system:
236
+
237
+ ```shell
238
+ # Base ctransformers with no GPU acceleration
239
+ pip install ctransformers
240
+ # Or with CUDA GPU acceleration
241
+ pip install ctransformers[cuda]
242
+ # Or with AMD ROCm GPU acceleration (Linux only)
243
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
244
+ # Or with Metal GPU acceleration for macOS systems only
245
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
246
+ ```
247
+
248
+ #### Simple ctransformers example code
249
+
250
+ ```python
251
+ from ctransformers import AutoModelForCausalLM
252
+
253
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
254
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/MLewd-ReMM-L2-Chat-20B-Inverted-GGUF", model_file="mlewd-remm-l2-chat-20b-inverted.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
255
+
256
+ print(llm("AI is going to"))
257
+ ```
258
+
259
+ ## How to use with LangChain
260
+
261
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
262
+
263
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
264
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
265
+
266
+ <!-- README_GGUF.md-how-to-run end -->
267
+
268
+ <!-- footer start -->
269
+ <!-- 200823 -->
270
+ ## Discord
271
+
272
+ For further support, and discussions on these models and AI in general, join us at:
273
+
274
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
275
+
276
+ ## Thanks, and how to contribute
277
+
278
+ Thanks to the [chirper.ai](https://chirper.ai) team!
279
+
280
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
281
+
282
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
283
+
284
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
285
+
286
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
287
+
288
+ * Patreon: https://patreon.com/TheBlokeAI
289
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
290
+
291
+ **Special thanks to**: Aemon Algiz.
292
+
293
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
294
+
295
+
296
+ Thank you to all my generous patrons and donaters!
297
+
298
+ And thank you again to a16z for their generous grant.
299
+
300
+ <!-- footer end -->
301
+
302
+ <!-- original-model-card start -->
303
+ # Original model card: Undi95's MLewd ReMM L2 Chat 20b Inverted
304
+
305
+
306
+ First :
307
+ ```shell
308
+ layer_slices:
309
+ - model: Undi95/MLewd-L2-Chat-13B
310
+ start: 0
311
+ end: 16
312
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
313
+ start: 8
314
+ end: 20
315
+ - model: Undi95/MLewd-L2-Chat-13B
316
+ start: 17
317
+ end: 32
318
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
319
+ start: 21
320
+ end: 40
321
+ ```
322
+
323
+ Inverted:
324
+ ```shell
325
+ layer_slices:
326
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
327
+ start: 0
328
+ end: 16
329
+ - model: Undi95/MLewd-L2-Chat-13B
330
+ start: 8
331
+ end: 20
332
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
333
+ start: 17
334
+ end: 32
335
+ - model: Undi95/MLewd-L2-Chat-13B
336
+ start: 21
337
+ end: 40
338
+ ```
339
+
340
+ Precise:
341
+ ```shell
342
+ layer_slices:
343
+ - model: Undi95/MLewd-L2-Chat-13B
344
+ start: 0
345
+ end: 8
346
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
347
+ start: 4
348
+ end: 12
349
+ - model: Undi95/MLewd-L2-Chat-13B
350
+ start: 9
351
+ end: 16
352
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
353
+ start: 13
354
+ end: 22
355
+ - model: Undi95/MLewd-L2-Chat-13B
356
+ start: 17
357
+ end: 24
358
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
359
+ start: 23
360
+ end: 32
361
+ - model: Undi95/MLewd-L2-Chat-13B
362
+ start: 25
363
+ end: 32
364
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
365
+ start: 33
366
+ end: 40
367
+ ```
368
+
369
+ PreciseInverted:
370
+ ```shell
371
+ layer_slices:
372
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
373
+ start: 0
374
+ end: 8
375
+ - model: Undi95/MLewd-L2-Chat-13B
376
+ start: 4
377
+ end: 12
378
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
379
+ start: 9
380
+ end: 16
381
+ - model: Undi95/MLewd-L2-Chat-13B
382
+ start: 13
383
+ end: 22
384
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
385
+ start: 17
386
+ end: 24
387
+ - model: Undi95/MLewd-L2-Chat-13B
388
+ start: 23
389
+ end: 32
390
+ - model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
391
+ start: 25
392
+ end: 32
393
+ - model: Undi95/MLewd-L2-Chat-13B
394
+ start: 33
395
+ end: 40
396
+ ```
397
+
398
+ Part1 = ReMM v2.1 merged /w MLewd low weight to keep consistency. I call this "dilution" and result show consistency and coherency without repeat/loop beside the small amount of duplicated datas.
399
+
400
+ The goal is to find the best way to interlace layers the best way possible to have a sweetspot between 13B and +30B.
401
+
402
+ Normal/Inverted is by chunk of 16 layers and Precise/PreciseInverted is by chunk of 8 layers.
403
+
404
+ All the models are made of 64(+1) layers. Need testing.
405
+
406
+ ## Prompt template: Alpaca
407
+
408
+ ```
409
+ Below is an instruction that describes a task. Write a response that completes the request.
410
+
411
+ ### Instruction:
412
+ {prompt}
413
+
414
+ ### Response:
415
+ ```
416
+
417
+ <!-- original-model-card end -->